
Java Persistence API
Simon Martinelli

Berner Fachhochschule



1 INTRODUCTION

2 GETTING STARTED

3 OBJECT-RELATIONAL MAPPING

4 ENTITY RELATIONSHIPS

5 ADVANCED O/R MAPPING

6 USING QUERIES

7 QUERY LANGUAGE

CONTENT

2



1 INTRODUCTION

3



THE PROBLEM

4



▶ Structure
An object contains both data and behavior

▶ Identity
An object has an identity independent of its state, while the identity of a record 
is determined by its data (primary key)

▶ Data encapsulation
An object protects its data by limiting the way it can be changed

▶ Transactionality
The data of a relational database is modified by transactions

OBJECT-RELATIONAL IMPEDANCE MISMATCH

5



▶ Work with ordinary Java classes for data (POJOs)

▶ Support

▶ relationship mapping

▶ transitive persistence

▶ automatic dirty checking

▶ lazy loading

▶ Minimize database roundtrips (join fetching)

▶ Generate SQL at runtime

MODERN PERSISTENCE APIS

6



TECHNOLOGY STACK

7

JDBC Driver (PostgreSQL etc.)

JDBC API

JPA Implementation (Hibernate etc.)

Java Persistence API

Database
(PostgreSQL etc.)



2 GETTING STARTED

8



▶ Class annotated with @Entity

▶ Requirements:

▶ There is a field annotated as primary key (@Id)

▶ The standard constructor must be present

▶ The class must not be final and must not contain final methods

▶ Fields must be private or protected

ENTITY CLASS

9



@Entity
public class Employee {
@Id
private Integer id;
private String name;
private long salary;

// getters/setters
}

ENTITY EXAMPLE

10



▶ New
Object is newly created, has no connection with the database and no valid ID

▶ Managed
The object has a record in the database, and changes are tracked 
automatically and synchronized with the database

▶ Detached
The object has a record in the database, but is disconnected, i.e. the state is no 
longer synchronized with the database

▶ Removed
The object still exists, but is marked for deletion

ENTITY STATE

11



ENTITY STATE TRANSITIONS

12



ENTITY MANAGER OVERVIEW

13



// CREATE ENTITY MANAGER
EntityManagerFactory emf = Persistence.createEntityManagerFactory("hr");
EntityManager em = emf.createEntityManager();

// PERSIST ENTITY
em.getTransaction().begin();
Employee employee = new Employee();
employee.setId(158); 
em.persist(employee);
em.getTransaction().commit();

// FIND ENTITY
Employee employee = em.find(Employee.class, 158);

ENTITY MANAGER EXAMPLE

14



// CHANGE ENTITY
em.getTransaction().begin();
employee.setSalary(emp.getSalary() + 1000);
em.getTransaction().commit();

// DELETE ENTITY
em.getTransaction().begin();
em.remove(employee);
em.getTransaction().commit();

ENTITY MANAGER EXAMPLE

15



The persistence context is the runtime environment of the O/R mapping and 
contains

▶ the set of all managed entities

▶ the used entity manager

▶ the current transaction

▶ the context type

PERSISTENCE CONTEXT

16



The persistence unit is defined by the deployment descriptor persistence.xml

<persistence version="3.0" ...>
<persistence-unit name="hr" transaction-type="RESOURCE_LOCAL">
<provider>org.hibernate.jpa.HibernatePersistenceProvider</provider>
<class>hr.Employee</class>
<properties>
<property name="javax.persistence.jdbc.driver" value="org.postgresql.Driver"/>
<property name="javax.persistence.jdbc.url" value="jdbc:postgresql://localhost:5432/hr"/>
<property name="javax.persistence.jdbc.user" value="postgres"/>
<property name="javax.persistence.jdbc.password" value="postgres"/>
<property name="javax.persistence.schema-generation.database.action" value="drop-and-create"/>

</properties>
</persistence-unit>

</persistence>

PERSISTENCE UNIT

17



3 OBJECT-RELATIONAL MAPPING

18



Table and column names are taken from the class and field names, but can be 
overridden by annotations

@Entity
@Table(name = "EMP")
public class Employee {
@Id
@Column(name = "EMP_ID")
private int id;
...

}

ENTITY MAPPING

19



The following data types can be used in entities:

▶ Strings, primitive types, wrapper classes (e.g. Integer), BigDecimal, Date, 
Calendar

▶ Enumerations

▶ Arrays of byte, Byte, char, Character

▶ References to other entities and collections

PERSISTENT DATA TYPES

20



▶ Implicitly by JDBC data type conversion tables

▶ Explicitly by @Column annotation, e.g. 

@Column(length = 10, nullable = false)
private String isbn;
@Column(columnDefinition = "VARCHAR(40)")
private String email;

▶ Product specific (JPA implementation, JDBC driver)

DATA TYPE MAPPING

21

https://download.oracle.com/otn-pub/jcp/jdbc-4_1-mrel-spec/jdbc4.1-fr-spec.pdf


▶ Permitted date/time types

java.sql.Date/Time/Timestamp
java.util.Date/Calendar

▶ For the java.util types, the JDBC type must be specified, e.g.

@Temporal(TemporalType.DATE)
private Calendar dob;

▶ Support for Java 8 Date/Time API (since JPA 2.2)

java.time.LocalDate/LocalTime/LocalDateTime

TEMPORAL TYPES

22



Enumerations can be persisted as ordinal number (position) or as string (name)

@Enumerated(EnumType.ORDINAL)
private Color color;

@Enumerated(EnumType.STRING)
private Color color;

ENUMERATIONS

23



Data can be stored as binary large object (blob) or character large object (clob)

@Lob
private byte[] picture;

@Lob
private char[] largeText;

LARGE OBJECTS

24



Fields can be excluded from persistence by modifier or annotation

private transient String translatedName;

@Transient
private String translatedName;

TRANSIENT PROPERTIES

25



▶ Each entity class must have a field annotated with @Id

▶ An ID field can have the following types:

▶ String, BigInteger, Date, UUID

▶ Primitive Java types: byte, int, short, long, char

▶ Wrapper classes: Byte, Integer, Short, Long, Character

▶ Array of primitive types or wrapper classes

THE PRIMARY KEY

26



▶ Primary keys can be generated in conjunction with the database

@Entity public class Employee {
@Id
@GeneratedValue(strategy=GenerationType.IDENTITY)
public Integer id;
...

}

▶ Generation strategies are Identity, Sequence, Table and Auto

PRIMARY KEY GENERATION

27



4 ENTITY RELATIONSHIPS

28



▶ Relationships between entities are represented by references or collections in 
the entity classes

▶ Relationships must be explicitly declared using annotations

▶ Additional details are often required for O/R mapping and behavior

RELATIONSHIPS

29



▶ Direction

▶ unidirectional

▶ bidirectional

▶ Cardinality

▶ one-to-one

▶ many-to-one

▶ one-to-many

▶ many-to-many

RELATIONSHIP CHARACTERISTICS

30



// Employee class
@OneToOne
private Address address;

ONE-TO-ONE, UNIDIRECTIONAL

31



// Employee class
@ManyToOne
private Department department;

MANY-TO-ONE, UNIDIRECTIONAL

32



// Employee class
@OneToMany
@JoinColumn(name = "employee_id")
private Set<Phone> phones;

ONE-TO-MANY, UNIDIRECTIONAL

33



// Employee class (inverse side)
@OneToMany(mappedBy = "employee")
private Set<Phone> phones;

// Phone class (owning side)
@ManyToOne(optional = false)
private Employee employee;

ONE-TO-MANY, BIDIRECTIONAL

34



▶ JPA distinguishes between the owning and the inverse side of a relationship:

▶ The owning side is responsible for managing the relationship in the 
database and has the foreign key

▶ The inverse side has a mappedBy attribute that specifies the foreign key 
attribute of the owning side

▶ In unidirectional relationships, the inverse side is missing

OWNING AND INVERSE SIDE

35



// Employee class (inverse side)
@ManyToMany(mappedBy = "employees")
private Set<Project> projects;

// Project class (owning side)
@ManyToMany
private Set<Employee> employees;

MANY-TO-MANY, BIDIRECTIONAL

36



▶ JPA supports cascaded persistence, i.e. the objects that are reachable from an 
entity can be included in the persistence operations

Employee employee = new Employee();
employee.setAddress(new Address(...));
em.persist(emp);

▶ Cascading must be declared in the relationship

@OneToOne(cascade = {CascadeType.PERSIST,CascadeType.REMOVE})
private Address address;

▶ Cascading types are PERSIST, MERGE, REMOVE, REFRESH, DETACH or ALL

CASCADED PERSISTENCE

37



▶ Child elements in to-many relationships can be automatically deleted when they 
are removed from the parent entity

@OneToMany(mappedBy="customer",
cascade = CascadeType.ALL, orphanRemoval = true)

private Set<Phone> phones;

ORPHAN REMOVAL

38



▶ Lazy loading allows to load referenced entities only when they are needed

@OneToMany(fetch = FetchType.LAZY)
private Set<Phone> phones;

▶ Default fetch type is EAGER for to-one relationships and LAZY for to-many 
relationships

▶ Lazy loading does not work over transaction boundaries (e.g. in the client), so 
explicit queries with join fetch or entity graphs must be used

LAZY LOADING

39



5 ADVANCED O/R MAPPING

40



▶ Embedded objects

▶ are one way to implement 
composition

▶ do not have their own identity

▶ are in the same table as the parent 
object

EMBEDDED OBJECTS

41



@Embeddable
public class Address {
private String street;
private String city;
private String state;
private String zip;

}

EMBEDDED OBJECTS EXAMPLE

42

@Entity
public class Employee {
@Id 
private int id;
private String name;
private long salary;

@Embedded 
private Address address;

}



▶ Composite keys are represented by 
their own class

public class EmployeeId
implements Serializable {

private String country;
private int id;
// equals and hashCode methods

}

COMPOSITE PRIMARY KEY

43

▶ Mapping option 1

@IdClass(EmployeeId.class)
@Entity public class Employee {
@Id private String country;
@Id private int id;
...

}

▶ Mapping option 2

@Entity public class Employee {
@EmbeddedId 
private EmployeeId id;
...

}



▶ Inheritance can be mapped, and base classes can be abstract

▶ All classes in an inheritance hierarchy inherit the primary key of the base class

▶ There are different mapping strategies for the database:

▶ a single table for the entire inheritance hierarchy

▶ a table for each non abstract class

▶ a table for each class

▶ mapped superclass

INHERITANCE

44



@Entity @Inheritance
public abstract class Project { ... }

@Entity public class DesignProject extends Project { ... }
@Entity public class QualityProject extends Project { ... }

SINGLE TABLE

45



@Entity @Inheritance(strategy = InheritanceType.JOINED)
public abstract class Project { ... }

@Entity public class DesignProject extends Project { ... }
@Entity public class QualityProject extends Project { ... }

JOINED TABLE

46



@Entity @Inheritance(strategy = InheritanceType.TABLE_PER_CLASS)
public abstract class Project { ... }

@Entity public class DesignProject extends Project { ... }
@Entity public class QualityProject extends Project { ... }

TABLE PER CLASS

47



The simplest way to map inheritance is a mapped superclass that has no 
representation in the database

@MappedSuperclass
public abstract class Base {
@Id @GeneratedValue
protected Integer id;
...

}

@Entity
public class Phone extends Base {
...

}

MAPPED SUPERCLASS

48



A version field is used for optimistic locking, i.e. it is checked and automatically 
updated by each transaction

@Entity
public class Employee {
@Id 
private int id;
@Version
private int version;
...

}

VERSION FIELDS

49



6 USING QUERIES

50



▶ Java Persistence Query Language (JPQL)

▶ SQL subset

▶ independent of the underlying database

▶ queries based on the class model

▶ Criteria API since JPA 2.0

▶ Native SQL

QUERIES IN JPA

51



/* DEFINE DYNAMIC QUERY */
TypedQuery<Employee> query =

em.createQuery("SELECT e FROM Employee e", Employee.class);

/* DEFINE NAMED QUERY */
@Entity
@NamedQuery(name = "findAll", query = "SELECT e FROM Employee e")
public class Employee { ... }
TypedQuery<Employee> query = em.createNamedQuery("findAll", Employee.class);

/* EXECUTE QUERY */
List<Employee> employees = query.getResultList();

USING QUERIES

52



▶ Classes

▶ Query

▶ TypedQuery<T>

▶ Query methods

▶ getResultList()

▶ getSingleResult()

▶ executeUpdate()

▶ setParameter()

▶ setFirstResult()

▶ setMaxResults()

QUERY API

53



▶ Simple Query

SELECT e FROM Employee e

▶ Projections

SELECT e.name FROM Employee e
SELECT e.department FROM Employee e
SELECT e.name, e.salary FROM Employee e

QUERY EXAMPLES

54



▶ Filtering

SELECT e FROM Employee e
WHERE e.department.name = 'QA'

▶ Joins (implicit/explicit)

SELECT e.name, p.number FROM Employee e, Phone p
WHERE e = p.employee AND p.type = 'Cell'

SELECT e.name, p.number FROM Employee e JOIN FETCH e.phones p
WHERE p.type = 'Cell'

QUERY EXAMPLES

55



▶ Using parameters (name/positional)

SELECT e FROM Employee e WHERE e.department = :dept AND e.salary > :salary
SELECT e FROM Employee e WHERE e.department = ?1 AND e.salary > ?2

▶ Passing parameters

// NAMED
query.setParameter("dept", "QA");
query.setParameter("salary", 40000);

// POSITIONAL
query.setParameter(1, "QA");
query.setParameter(2, 40000);

QUERY PARAMETERS

56



▶ Path expressions allow navigation from an object to a referenced object

SELECT e.address FROM Employee e
SELECT e.address.name FROM Employee e

▶ A path expression can end in a collection

SELECT e.projects FROM Employee e

▶ A path expression cannot navigate beyond a collection

SELECT e.projects.name FROM Employee e

PATH EXPRESSIONS

57



▶ Possible result types are

▶ primitive types and strings

▶ entity types

▶ array of objects

▶ custom types (through constructor expressions)

▶ If the result is an entity, it will be in the managed state

QUERY RESULTS

58



If a query contains a projection on multiple values, a list of object arrays is 
returned

Query query = em.createQuery(
"SELECT e.name, e.department.name " +
"FROM Project p JOIN p.employees e WHERE p.name = 'ZLD'");

List<Object[]> results = query.getResultList();
results.forEach(values -> System.out.println(values[0] + ", " + values[1]));

MULTIPLE RESULTS

59



Constructor expressions allow returning typed results for projections on multiple 
values

public record EmployeeDTO(String name, String deptName) {}

TypedQuery<EmployeeDTO> query = em.createQuery(
"SELECT NEW hr.dto.EmployeeDTO(e.name, e.department.name) " +
"FROM Project p JOIN p.employees e WHERE p.name = 'ZLD'");

List<EmployeeDTO> employees = query.getResultList();
employees.forEach(e -> System.out.println(e.name() + ", " + e.deptName()));

CONSTRUCTOR EXPRESSIONS

60



Paging can be used to limit the result size

TypedQuery<Employee> query = ...
query.setFirstResult(1);
query.setMaxResults(10);

List<EmployeeDTO> employees = query.getResultList();
employees.forEach(e -> ...);

PAGING

61



7 QUERY LANGUAGE

62



CLASS MODEL

63



▶ A SELECT query has the following structure

SELECT <select_expression>
FROM <from_clause>
[WHERE <conditional_expression>]
[ORDER BY <order_by_clause>]
[GROUP BY <group_by_clause>]
[HAVING <conditional_expression>]

▶ Example

SELECT e FROM Employee e
WHERE e.name = 'John Doe'
ORDER BY e.salary

SELECT

64



▶ Inner joins

SELECT p FROM Employee e JOIN e.phones p

▶ Outer joins

SELECT e, d FROM Employee e LEFT JOIN e.department d

▶ Fetch joins

SELECT e FROM Employee e JOIN FETCH e.address

JOINS

65



▶ Literals

▶ Parameters (named/positional)

▶ Operators

▶ Navigation (.)

▶ Unary (+/-)

▶ Arithmetic (+, -, *, /)

▶ Comparison (=, >, >=, <, <=, NOT, BETWEEN, LIKE, IN, IS NULL, IS EMPTY, 
MEMBER OF)

▶ Logical (AND, OR, NOT)

WHERE CONDITIONS

66



The BETWEEN operator checks if a value is in a certain range (including limits)

SELECT e FROM Employee e
WHERE e.salary BETWEEN 40000 AND 45000

BETWEEN

67



The EMPTY operator checks if a collection is empty (or not)

SELECT e FROM Employee e
WHERE e.phones IS NOT EMPTY

EMPTY

68



The MEMBER OF operator checks if a value or entity is member of a JPA collection

SELECT e 
FROM Employee e
WHERE :project MEMBER OF e.projects

MEMBER OF

69



The IN operator checks if a value or entity is contained in a specified set

SELECT e FROM Employee e
WHERE e.address.state IN ('NY','CA')

IN

70



The EXISTS operator checks if a subquery returns any results

SELECT e FROM Employee e
WHERE NOT EXISTS (SELECT p FROM e.phones p WHERE p.type = 'Cell')

EXISTS

71



The ALL and ANY operators check if a condition is satisfied for all or some results 
of the subquery

SELECT e FROM Employee e
WHERE e.salary >= ALL (SELECT c.salary FROM e.department.employees c)

ALL, ANY

72



Values can be processed in the select clause using the following functions

▶ Strings
CONCAT, LENGTH, LOCATE, LOWER, SUBSTRING, UPPER, TRIM

▶ Numbers
ABS, MOD, SQRT

▶ Date/Time
CURRENT_DATE, CURRENT_TIME, CURRENT_TIMESTAMP

▶ Collections
SIZE, AVG, COUNT, MAX, MIN, SUM

FUNCTIONS

73



The ORDER BY clause can be used to sort the results of a query by a value 
contained in the select clause

SELECT e FROM Employee e
ORDER BY DESC e.name

SELECT e FROM Employee e
ORDER BY e.name, e.salary DESC

ORDER BY

74



The GROUP BY clause defines a grouping for the aggregation or results

SELECT d.name, COUNT(e)
FROM Department d JOIN d.employees e
GROUP by d

GROUP BY

75



The HAVING clause defines a filter that is used for the grouping of results

SELECT e.name
FROM Employee e JOIN e.projects p
GROUP BY e HAVING COUNT(p) > 1

HAVING

76



▶ An UPDATE query has the following structure

UPDATE <entity_name> [[AS] <identification_variable>]
SET <update_statement> {, <update_statement>}*
[WHERE <conditional_expression>]

▶ Example

UPDATE Employee e
SET e.salary = 60000
WHERE e.salary = 55000

UPDATE

77



▶ A DELETE query hat the following structure

DELETE FROM <entity_name>
[WHERE <conditional_expression>]

▶ Example

DELETE FROM Employee e
WHERE e.department IS NULL

DELETE

78


	Java Persistence API
	CONTENT
	1 INTRODUCTION
	THE PROBLEM
	OBJECT-RELATIONAL IMPEDANCE MISMATCH
	MODERN PERSISTENCE APIS
	TECHNOLOGY STACK
	2 GETTING STARTED
	ENTITY CLASS
	ENTITY EXAMPLE
	ENTITY STATE
	ENTITY STATE TRANSITIONS
	ENTITY MANAGER OVERVIEW
	ENTITY MANAGER EXAMPLE
	ENTITY MANAGER EXAMPLE
	PERSISTENCE CONTEXT
	PERSISTENCE UNIT
	3 OBJECT-RELATIONAL MAPPING
	ENTITY MAPPING
	PERSISTENT DATA TYPES
	DATA TYPE MAPPING
	TEMPORAL TYPES
	ENUMERATIONS
	LARGE OBJECTS
	TRANSIENT PROPERTIES
	THE PRIMARY KEY
	PRIMARY KEY GENERATION
	4 ENTITY RELATIONSHIPS
	RELATIONSHIPS
	RELATIONSHIP CHARACTERISTICS
	ONE-TO-ONE, UNIDIRECTIONAL
	MANY-TO-ONE, UNIDIRECTIONAL
	ONE-TO-MANY, UNIDIRECTIONAL
	ONE-TO-MANY, BIDIRECTIONAL
	OWNING AND INVERSE SIDE
	MANY-TO-MANY, BIDIRECTIONAL
	CASCADED PERSISTENCE
	ORPHAN REMOVAL
	LAZY LOADING
	5 ADVANCED O/R MAPPING
	EMBEDDED OBJECTS
	EMBEDDED OBJECTS EXAMPLE
	COMPOSITE PRIMARY KEY
	INHERITANCE
	SINGLE TABLE
	JOINED TABLE
	TABLE PER CLASS
	MAPPED SUPERCLASS
	VERSION FIELDS
	6 USING QUERIES
	QUERIES IN JPA
	USING QUERIES
	QUERY API
	QUERY EXAMPLES
	QUERY EXAMPLES
	QUERY PARAMETERS
	PATH EXPRESSIONS
	QUERY RESULTS
	MULTIPLE RESULTS
	CONSTRUCTOR EXPRESSIONS
	PAGING
	7 QUERY LANGUAGE
	CLASS MODEL
	SELECT
	JOINS
	WHERE CONDITIONS
	BETWEEN
	EMPTY
	MEMBER OF
	IN
	EXISTS
	ALL, ANY
	FUNCTIONS
	ORDER BY
	GROUP BY
	HAVING
	UPDATE
	DELETE

