Berner Fachhochschule
Haute école spécialisée bernoise
Bern University of Applied Sciences

Java Persistence API

Simon Martinelli

Berner Fachhochschule

CONTENT

1 INTRODUCTION

2 GETTING STARTED

3 OBJECT-RELATIONAL MAPPING
4 ENTITY RELATIONSHIPS

5 ADVANCED O/R MAPPING

6 USING QUERIES

7/ QUERY LANGUAGE

1 INTRODUCTION

THE PROBLEM

ID

NAME (O)
SALARY (0)

Employee
-id : int
-name : String
-salary : long

ID

NAME (O)

EMP3SAL

(ID (FK)]

LSALARY (0) J

OBJECT-RELATIONAL IMPEDANCE MISMATCH

Structure
An object contains both data and behavior

Identity
An object has an identity independent of its state, while the identity of a record
is determined by its data (primary key)

Data encapsulation
An object protects its data by limiting the way it can be changed

Transactionality
The data of a relational database is modified by transactions

MODERN PERSISTENCE APIS

Work with ordinary Java classes for data (POJOs)

Support
relationship mapping
transitive persistence
automatic dirty checking
lazy loading

Minimize database roundtrips (join fetching)

Generate SQL at runtime

TECHNOLOGY STACK

Java Persistence API

JPA Implementation (Hibernate etc.)

JDBC API

JDBC Driver (PostgreSQL etc.)

Database
(PostgreSQL etc.)

2 GETTING STARTED

ENTITY CLASS

Class annotated with @Entity

Requirements:
There is a field annotated as primary key (@Id)
The standard constructor must be present
The class must not be final and must not contain final methods
Fields must be private or protected

ENTITY EXAMPLE

@Entity

public class Employee {
@Id
private Integer id;
private String name;
private long salary;

// getters/setters

ENTITY STATE

New
Object is newly created, has no connection with the database and no valid ID

Managed
The object has a record in the database, and changes are tracked
automatically and synchronized with the database

Detached
The object has a record in the database, but is disconnected, i.e. the state is no

longer synchronized with the database

Removed
The object still exists, but is marked for deletion

ENTITY STATE TRANSITIONS

detachientity)
clear()
close()

Mew
Transient

remove(entity)

merge({entity)

findientityClass, primaryKey)
getReference(entityClass, primaryKey)
createCQuery().getResultList{)
createQuery().getSingleResult()

persist{entity) Managed

7(/

persist{entity)

ENTITY MANAGER OVERVIEW

Persistence

1

= -Erstellt

-Konfiguriert durch - \/
«interface»

Persistence Unit |< EntityManagerFactory
1 1

-Erstellt

-Manages winterface»
Persistence Context |< EntityManager

1

ENTITY MANAGER EXAMPLE

// CREATE ENTITY MANAGER
EntityManagerFactory emf = Persistence.createEntityManagerFactory("hr");
EntityManager em = emf.createEntityManager();

// PERSIST ENTITY
em.getTransaction().begin();
Employee employee = new Employee();
employee.setId(158);
em.persist(employee);
em.getTransaction().commit();

// FIND ENTITY
Employee employee = em.find(Employee.class, 158);

ENTITY MANAGER EXAMPLE

// CHANGE ENTITY
em.getTransaction().begin();
employee.setSalary(emp.getSalary() + 1000);
em.getTransaction().commit();

// DELETE ENTITY
em.getTransaction().begin();
em.remove(employee);
em.getTransaction().commit();

PERSISTENCE CONTEXT

The persistence context is the runtime environment of the O/R mapping and
contains

the set of all managed entities
the used entity manager

the current transaction

the context type

PERSISTENCE UNIT

The persistence unit is defined by the deployment descriptor persistence.xml

<persistence version="3.0" ..

.>

<persistence-unit name="hr" transaction-type="RESOURCE_LOCAL">
<provider>org.hibernate.jpa.HibernatePersistenceProvider</provider>
<class>hr.Employee</class>

<properties>
<property name="javax
<property name="javax
<property name="javax
<property name="javax
<property name="javax
</properties>
</persistence-unit>
</persistence>

.persistence
.persistence
.persistence
.persistence
.persistence

.jdbc.driver" value="org.postgresql.Driver"/>

.jdbc.url" value="jdbc:postgresql://localhost:5432/hr"/>
.jdbc.user" value="postgres"/>

.jdbc.password" value="postgres"/>
.schema-generation.database.action” value="drop-and-create"/>

3 OBJECT-RELATIONAL MAPPING

ENTITY MAPPING

Table and column names are taken from the class and field names, but can be
overridden by annotations

@Entity

@Table(name = "EMP")

public class Employee {
@Id
@Column(name = "EMP_ID")
private int id;

PERSISTENT DATA TYPES

The following data types can be used in entities:

Strings, primitive types, wrapper classes (e.g. Integer), BigDecimal, Date,
Calendar

Enumerations
Arrays of byte, Byte, char, Character
References to other entities and collections

DATA TYPE MAPPING

Implicitly by JDBC data type conversion tables

Explicitly by @Column annotation, e.q.

@Column(length = 10, nullable = false)
private String isbn;
@Column(columnDefinition = "VARCHAR(40)")
private String email;

Product specific JPA implementation, JDBC driver)

https://download.oracle.com/otn-pub/jcp/jdbc-4_1-mrel-spec/jdbc4.1-fr-spec.pdf

TEMPORAL TYPES

Permitted date/time types

java.sql.Date/Time/Timestamp
java.util.Date/Calendar

For the java.util types, the JDBC type must be specified, e.qg.

@Temporal (TemporalType.DATE)
private Calendar dob;

Support for Java 8 Date/Time API (since JPA 2.2)

java.time.LocalDate/LocalTime/LocalDateTime

ENUMERATIONS

Enumerations can be persisted as ordinal number (position) or as string (name)

@Enumerated(EnumType.ORDINAL)
private Color color;

@Enumerated(EnumType.STRING)
private Color color;

LARGE OBJECTS

Data can be stored as binary large object (blob) or character large object (clob)

@Lob
private byte[] picture;

@Lob
private char[] largeText;

TRANSIENT PROPERTIES

Fields can be excluded from persistence by modifier or annotation

private transient String translatedName;

@Transient
private String translatedName;

THE PRIMARY KEY

Each entity class must have a field annotated with @Id

An ID field can have the following types:
String, Biglnteger, Date, UUID
Primitive Java types: byte, int, short, long, char
Wrapper classes: Byte, Integer, Short, Long, Character
Array of primitive types or wrapper classes

PRIMARY KEY GENERATION

Primary keys can be generated in conjunction with the database

@Entity public class Employee {
@Id
@GeneratedValue(strategy=GenerationType.IDENTITY)
public Integer id;

Generation strategies are ldentity, Sequence, Table and Auto

4 ENTITY RELATIONSHIPS

RELATIONSHIPS

Relationships between entities are represented by references or collections in
the entity classes

Relationships must be explicitly declared using annotations

Additional details are often required for O/R mapping and behavior

RELATIONSHIP CHARACTERISTICS

Direction Source Target
unidirectional Employee Address
bidirectional

Employee Project

Cardinality
one-to-one
many-to-one Employee Department
one-to-many
many-to-many

Employee Address

Employee Phone

Employee Project

ONE-TO-ONE, UNIDIRECTIONAL

EMPLOYEE
Employee Address ID

-id :int _ -id © int NAVIE (O) D

-name : String -street : String SALARY (0) o)

- : T STARTDATE (O) ITY (
salary : long >"C”!r’ : String DEPARTMENT _ID (O} (FK) STATE (O}

0.1 -state : String MAMAGER_ID {0} (FK) STREET (O)
- Zip : String ADDRESS_ID (O) (FK) ZIP (0)

ADDRESS

// Employee class
@OneToOne
private Address address;

MANY-TO-ONE, UNIDIRECTIONAL

Employee

-id :int
-name : String
-salary : long

Department

EMPLOYEE

D

-id :int
-name : String

// Employee class
@ManyToOne

private Department department;

NAME (O)
SALARY (0)

STARTDATE (O)
DEPARTMENT _ID (O) (FK)
MANAGER_ID (0) (FK)
ADDRESS_ID (O) (FK)

DEPARTMENT

D

NAME (O)

ONE-TO-MANY, UNIDIRECTIONAL

EMPLOYEE
D

Phone Employee 5
-id : int -id : int NAME (O)
-phonenumber : String -name : String PHDNEZI;'UMBER (0) g?ﬁ'—ﬁ%ﬁé ©)
R N : i . TYPE (O)
type : String salary : long EMPLOYEE_ID (O) (FK) DEPARTMENT_ID (O) (FK)
MANAGER_ID (O) (FK)
ADDRESS_ID (O) (FK)

// Employee class

@OneToMany

@JoinColumn(name = "employee id")
private Set<Phone> phones;

ONE-TO-MANY, BIDIRECTIONAL

Phone Employee
-id : int -id : int
-phonenumber : String -name : String
-type : String -salary : long

// Employee class (inverse side)
@OneToMany(mappedBy = "employee")
private Set<Phone> phones;

// Phone class (owning side)
@ManyToOne(optional = false)
private Employee employee;

EMPLOYEE

D

1D

PHONENUMEBER (O}
TYPE (D)
EMPLOYEE_ID (O} (FK)

MAME (O)

SALARY (O)

STARTDATE (O)
DEPARTMENT_ID (Q) (FK)
MANAGER_ID (O) (FK)
ADDRESS_ID (O) (FK)

OWNING AND INVERSE SIDE

JPA distinguishes between the owning and the inverse side of a relationship:

The owning side is responsible for managing the relationship in the
database and has the foreign key

The inverse side has a mappedBy attribute that specifies the foreign key
attribute of the owning side

In unidirectional relationships, the inverse side is missing

MANY-TO-MANY, BIDIRECTIONAL

EMPLOYEE

D

MNAME (O)
SALARY (O)
STARTDATE (O)
Employee Project DEPARTMENT _ID (O) (FK)
G4 int MANAGER_ID (O) (FK)

' -id - int ADDRESS_ID (O) (FK)

-name : String >-name . String
-salary : long * :

PROJECT EMPLOYEE

PROJECTS_ID (FK)
EMPLOYEES_ID (FK)

// Employee class (inverse side) L
@ManyToMany(mappedBy = "employees")
private Set<Project> projects;

// Project class (owning side)

DTYPE (O
@ManyToMany hMMEéJ
private Set<Employee> employees;

CASCADED PERSISTENCE

JPA supports cascaded persistence, i.e. the objects that are reachable from an
entity can be included in the persistence operations

Employee employee = new Employee();
employee.setAddress(new Address(...));
em.persist(emp);

Cascading must be declared in the relationship

@OneToOne(cascade = {CascadeType.PERSIST,CascadeType.REMOVE})
private Address address;

Cascading types are PERSIST, MERGE, REMOVE, REFRESH, DETACH or ALL

ORPHAN REMOVAL

Child elements in to-many relationships can be automatically deleted when they
are removed from the parent entity

@OneToMany (mappedBy="customer",

cascade = CascadeType.ALL, orphanRemoval = true)
private Set<Phone> phones;

LAZY LOADING

Lazy loading allows to load referenced entities only when they are needed

@OneToMany(fetch = FetchType.LAZY)
private Set<Phone> phones;

Default fetch type is EAGER for to-one relationships and LAZY for to-many
relationships

Lazy loading does not work over transaction boundaries (e.g. in the client), so
explicit queries with join fetch or entity graphs must be used

5 ADVANCED O/R MAPPING

EMBEDDED OBJECTS

Embedded objects

are one way to implement
composition

do not have their own identity

are in the same table as the parent
object

Employee

-id @ int
-name : String
-salary : long

0.1

Address

-id : int
-street : String

———>1city : String

-state : String
-zip : String

EMPLOYEE

PK

ID

NAME
SALARY
STREET
CITY
STATE
ZIP

EMBEDDED OBJECTS EXAMPLE

@Embeddable @Entity

public class Address { public class Employee {
private String street; @Id
private String city; private int id;
private String state; private String name;
private String zip; private long salary;

@Embedded
private Address address;

COMPOSITE PRIMARY KEY

Composite keys are represented by
their own class

public class Employeeld
implements Serializable {
private String country;
private int id;
// equals and hashCode methods
}

Mapping option 1

@IdClass(Employeeld.class)
@Entity public class Employee {
@Id private String country;

@Id private int id;

Mapping option 2

@Entity public class Employee {
@EmbeddedId
private Employeeld id;

INHERITANCE

Inheritance can be mapped, and base classes can be abstract
All classes in an inheritance hierarchy inherit the primary key of the base class

There are different mapping strategies for the database:
a single table for the entire inheritance hierarchy
a table for each non abstract class
a table for each class
mapped superclass

SINGLE TABLE

Project

-id :int
-name : String

T

DesignProject

@Entity @Inheritance
public abstract class Project {

)

PROJECT

ID

DTYPE (O)
NAME (O)

QualityProject

@Entity public class DesignProject extends Project { ... }
@Entity public class QualityProject extends Project { ... }

JOINED TABLE

PROJECT
Project D
-id : int
-name : String

NAME (O}

DESIGNPROJECT rfilUf“tL'T‘t’F"Ri:'JEGT
") ID (FK) W

DesignProject QualityProject (ID (FK)

[k)

@Entity @Inheritance(strategy = InheritanceType.JOINED)
public abstract class Project { ... }

@Entity public class DesignProject extends Project { ... }
@Entity public class QualityProject extends Project { ... }

TABLE PER CLASS

Project

-id = int . . .)
name : String DesignProject QualityProject

T

DesignProject QualityProject

name (O) name (O)

@Entity @Inheritance(strategy = InheritanceType.TABLE_PER_CLASS)
public abstract class Project { ... }

@Entity public class DesignProject extends Project { ... }
@Entity public class QualityProject extends Project { ... }

MAPPED SUPERCLASS

The simplest way to map inheritance is a mapped superclass that has no
representation in the database

@MappedSuperclass

public abstract class Base {
@Id @GeneratedValue
protected Integer id;

}...

@Entity
public class Phone extends Base {

}...

VERSION FIELDS

A version field is used for optimistic locking, i.e. it is checked and automatically
updated by each transaction

@Entity

public class Employee {
@Id
private int id;
@Version
private int version;

6 USING QUERIES

QUERIES IN JPA

Java Persistence Query Language (JPQL)
SQL subset
independent of the underlying database
queries based on the class model

Criteria API since JPA 2.0

Native SQL

USING QUERIES

/* DEFINE DYNAMIC QUERY */
TypedQuery<Employee> query =
em.createQuery("SELECT e FROM Employee e", Employee.class);

/* DEFINE NAMED QUERY */

@Entity

@NamedQuery(name = "findAll", query = "SELECT e FROM Employee e")

public class Employee { ... }

TypedQuery<Employee> query = em.createNamedQuery("findAll", Employee.class);

/* EXECUTE QUERY */
List<Employee> employees = query.getResultList();

QUERY API

Classes

Query
TypedQuery<T>

Query methods
getResultList()
getSingleResult()
executeUpdate()
setParameter()
setFirstResult()
setMaxResults()

QUERY EXAMPLES

Simple Query

SELECT e FROM Employee e

Projections

SELECT e.name FROM Employee e
SELECT e.department FROM Employee e
SELECT e.name, e.salary FROM Employee e

QUERY EXAMPLES

Filtering

SELECT e FROM Employee e
WHERE e.department.name = 'QA’

Joins (implicit/explicit)

SELECT e.name, p.number FROM Employee e, Phone p
WHERE e = p.employee AND p.type = 'Cell’

SELECT e.name, p.number FROM Employee e JOIN FETCH e.phones p
WHERE p.type = 'Cell’

QUERY PARAMETERS

Using parameters (name/positional)

SELECT e FROM Employee e WHERE e.department = :dept AND e.salary > :salary
SELECT e FROM Employee e WHERE e.department ?1 AND e.salary > ?2

Passing parameters

// NAMED
query.setParameter("dept", "QA");
query.setParameter("salary"”, 40000);

// POSITIONAL
query.setParameter(1, "QA");
query.setParameter(2, 40000);

PATH EXPRESSIONS

Path expressions allow navigation from an object to a referenced object

SELECT e.address FROM Employee e
SELECT e.address.name FROM Employee e

A path expression can end in a collection

SELECT e.projects FROM Employee e

A path expression cannot navigate beyond a collection

SELECT e.projects.name FROM Employee e

QUERY RESULTS

Possible result types are
primitive types and strings
entity types
array of objects
custom types (through constructor expressions)

If the result is an entity, it will be in the managed state

MULTIPLE RESULTS

If 2 query contains a projection on multiple values, a list of object arrays is
returned

Query query = em.createQuery(

"SELECT e.name, e.department.name " +
"FROM Project p JOIN p.employees e WHERE p.name = 'ZLD'");

List<Object[]> results = query.getResultList();
results.forEach(values -> System.out.println(values[@] + ", " + values[1]));

CONSTRUCTOR EXPRESSIONS

Constructor expressions allow returning typed results for projections on multiple
values

public record EmployeeDTO(String name, String deptName) {}

TypedQuery<EmployeeDTO> query = em.createQuery(
"SELECT NEW hr.dto.EmployeeDTO(e.name, e.department.name) " +
"FROM Project p JOIN p.employees e WHERE p.name = 'ZLD'");

List<EmployeeDTO> employees = query.getResultlList();
employees.forEach(e -> System.out.println(e.name() + ", " + e.deptName()));

PAGING

Paging can be used to limit the result size

TypedQuery<Employee> query = ...
query.setFirstResult(1);
query.setMaxResults(10);

List<EmployeeDTO> employees = query.getResultlList();
employees.forEach(e -> ...);

/ QUERY LANGUAGE

CLASS MODEL

0..1 Department
Phone \\4 -id @ int

-id @ int Employee -name : String

-phonenumber : String >-id :int

-type : String -name : String

-salary : long

\

Address
-id : int
- -street : String
W ~city : String
Project -state : String
-name : String

JAN

DesignProject QualityProject

SELECT

A SELECT query has the following structure

SELECT <select expression>

FROM <from_clause>

[WHERE <conditional expression>]
[ORDER BY <order_ by clause>]
[GROUP BY <group by clause>]
[HAVING <conditional expression>]

Example

SELECT e FROM Employee e
WHERE e.name = 'John Doe'
ORDER BY e.salary

JOINS

Inner joins

SELECT p FROM Employee e JOIN e.phones p

Outer joins

SELECT e, d FROM Employee e LEFT JOIN e.department d

Fetch joins

SELECT e FROM Employee e JOIN FETCH e.address

WHERE CONDITIONS

Literals
Parameters (named/positional)

Operators
Navigation (.)
Unary (+/-)
Arithmetic (+, -, *, /)

Comparison (=, >, >=, <, <=, NOT, BETWEEN, LIKE, IN, IS NULL, IS EMPTY,
MEMBER OF)

Logical (AND, OR, NOT)

BETWEEN

The BETWEEN operator checks if a value is in a certain range (including limits)

SELECT e FROM Employee e
WHERE e.salary BETWEEN 40000 AND 45000

EMPTY

The EMPTY operator checks if a collection is empty (or not)

SELECT e FROM Employee e
WHERE e.phones IS NOT EMPTY

MEMBER OF

The MEMBER OF operator checks if a value or entity is member of a JPA collection

SELECT e
FROM Employee e
WHERE :project MEMBER OF e.projects

IN

The IN operator checks if a value or entity is contained in a specified set

SELECT e FROM Employee e
WHERE e.address.state IN ('NY','CA")

EXISTS

The EXISTS operator checks if a subquery returns any results

SELECT e FROM Employee e
WHERE NOT EXISTS (SELECT p FROM e.phones p WHERE p.type = 'Cell')

ALL, ANY

The ALL and ANY operators check if a condition is satisfied for all or some results
of the subquery

SELECT e FROM Employee e
WHERE e.salary >= ALL (SELECT c.salary FROM e.department.employees c)

FUNCTIONS

Values can be processed in the select clause using the following functions

Strings
CONCAT, LENGTH, LOCATE, LOWER, SUBSTRING, UPPER, TRIM

Numbers
ABS, MOD, SQRT

Date/Time
CURRENT_DATE, CURRENT_TIME, CURRENT_TIMESTAMP

Collections
SIZE, AVG, COUNT, MAX, MIN, SUM

ORDER BY

The ORDER BY clause can be used to sort the results of a query by a value
contained in the select clause

SELECT e FROM Employee e
ORDER BY DESC e.name

SELECT e FROM Employee e
ORDER BY e.name, e.salary DESC

GROUP BY

The GROUP BY clause defines a grouping for the aggregation or results

SELECT d.name, COUNT(e)
FROM Department d JOIN d.employees e
GROUP by d

HAVING

The HAVING clause defines a filter that is used for the grouping of results

SELECT e.name
FROM Employee e JOIN e.projects p
GROUP BY e HAVING COUNT(p) > 1

UPDATE

An UPDATE query has the following structure

UPDATE <entity name> [[AS] <identification_variable>]
SET <update_statement> {, <update statement>}*
[WHERE <conditional expression>]

Example

UPDATE Employee e
SET e.salary = 60000
WHERE e.salary = 55000

DELETE

A DELETE query hat the following structure

DELETE FROM <entity name>
[WHERE <conditional expression>]

Example

DELETE FROM Employee e
WHERE e.department IS NULL

	Java Persistence API
	CONTENT
	1 INTRODUCTION
	THE PROBLEM
	OBJECT-RELATIONAL IMPEDANCE MISMATCH
	MODERN PERSISTENCE APIS
	TECHNOLOGY STACK
	2 GETTING STARTED
	ENTITY CLASS
	ENTITY EXAMPLE
	ENTITY STATE
	ENTITY STATE TRANSITIONS
	ENTITY MANAGER OVERVIEW
	ENTITY MANAGER EXAMPLE
	ENTITY MANAGER EXAMPLE
	PERSISTENCE CONTEXT
	PERSISTENCE UNIT
	3 OBJECT-RELATIONAL MAPPING
	ENTITY MAPPING
	PERSISTENT DATA TYPES
	DATA TYPE MAPPING
	TEMPORAL TYPES
	ENUMERATIONS
	LARGE OBJECTS
	TRANSIENT PROPERTIES
	THE PRIMARY KEY
	PRIMARY KEY GENERATION
	4 ENTITY RELATIONSHIPS
	RELATIONSHIPS
	RELATIONSHIP CHARACTERISTICS
	ONE-TO-ONE, UNIDIRECTIONAL
	MANY-TO-ONE, UNIDIRECTIONAL
	ONE-TO-MANY, UNIDIRECTIONAL
	ONE-TO-MANY, BIDIRECTIONAL
	OWNING AND INVERSE SIDE
	MANY-TO-MANY, BIDIRECTIONAL
	CASCADED PERSISTENCE
	ORPHAN REMOVAL
	LAZY LOADING
	5 ADVANCED O/R MAPPING
	EMBEDDED OBJECTS
	EMBEDDED OBJECTS EXAMPLE
	COMPOSITE PRIMARY KEY
	INHERITANCE
	SINGLE TABLE
	JOINED TABLE
	TABLE PER CLASS
	MAPPED SUPERCLASS
	VERSION FIELDS
	6 USING QUERIES
	QUERIES IN JPA
	USING QUERIES
	QUERY API
	QUERY EXAMPLES
	QUERY EXAMPLES
	QUERY PARAMETERS
	PATH EXPRESSIONS
	QUERY RESULTS
	MULTIPLE RESULTS
	CONSTRUCTOR EXPRESSIONS
	PAGING
	7 QUERY LANGUAGE
	CLASS MODEL
	SELECT
	JOINS
	WHERE CONDITIONS
	BETWEEN
	EMPTY
	MEMBER OF
	IN
	EXISTS
	ALL, ANY
	FUNCTIONS
	ORDER BY
	GROUP BY
	HAVING
	UPDATE
	DELETE

