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Goals

● Understand the messaging paradigm
● Know the different JMS messaging models
● Develop a Spring application using JMS
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Messaging versus RPC

● When a remote method is invoked, the caller is blocked until the 
method completes

● The synchronized nature of RPC tightly couples the client to the 
server and creates highly interdependent systems

● Messaging applications exchange messages through virtual channels 
called destinations so that senders and receivers are not bound to 
each other

● Messages are delivered asynchronously, i.e. the sender is not 
required to wait for the message to be received by the recipient

Producer Destination Consumer
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Messaging Systems

● Messaging systems allow two or more applications to exchange 
information in the form of messages

● A message is a self-contained package of business data and network 
routing headers

● Messaging systems provide fault tolerance, load balancing, scalability, 
and transactional support

Messaging
System

Application Application

Application Application
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Java Message Service

● Messaging systems use different message formats and network 
protocols (TCP/IP, HTTP, SSL, IP multicast), but the basic semantics 
are the same

● The Java Message Service (JMS) is a standardized API for sending and 
receiving messages that can be used with many different messaging 
systems

Application

Java Message Service

IBM
MQSeries

Progress
SonicMQ

BEA
WebLogic ...
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Publish-Subscribe Domain

● In the publish-and-subscribe domain, a producer can send a message 
to many consumers through a destination called topic

● Consumers can subscribe to a topic and receive a copy of each 
message

● Messages are usually broadcast to consumers (push-based model)
● A topic retains messages only as long as it takes to deliver them to 

the current subscribers
● There is a timing dependency between publishers and subscribers

Publisher Topic

Subscriber

Subscriber
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Point-to-Point Domain

● In the point-to-point domain, a producer can send a message to one 
consumer through a destination called queue

● A given queue may have multiple receivers, but only one receiver 
may consume each message

● Messages are usually requested from the queue (pull-based model)
● A queue delivers messages in the order they were placed into it
● A queue retains messages until they are consumed or expire
● There is no timing dependency between senders and receivers

Sender Queue

Receiver

Receiver



10

Guaranteed Delivery

● Messaging systems provide guaranteed delivery which ensures that 
the intended consumers will eventually receive a message even if a 
partial failure occurs

● Guaranteed delivery uses store-and-forward mechanism, i.e. the 
message server writes the incoming messages to a persistent store 
and then forwards them to the intended consumers

● If the message server crashes, it will deliver the persistent messages 
to consumers as soon as it starts up again

Producer Message
Server Consumer

Persistent
Store
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Message Acknowledgment

● Message acknowledgment is part of the protocol between the client 
runtime library of the JMS provider and the message server

● The server acknowledges the receipt of messages from producers, 
consumers acknowledge the receipt of messages from the server

● The acknowledgment protocol allows the JMS provider to manage 
the distribution of messages and guarantee their delivery

● If a consumer fails to acknowledge a message, the server considers 
the message undelivered and will attempt to redeliver it

Producer Message
Server Consumer
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Transactional Messaging

● A JMS client can group multiple send or receive operations into an 
atomic unit of work

● With transactional sends, messages delivered to the server are not 
forwarded to the consumers until the producer commits the 
transaction

● With transactional receives, messages delivered to the consumer are 
not deleted by the server until the consumer commits the transaction

● JMS supports distributed transactions across different transactional 
resources using the two-phase commit protocol (2PC)
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Anatomy of a JMS Message

● A JMS message carries application data and provides event 
notification

● A JMS message has three parts:
● the message headers provide metadata and routing information
● the message properties are defined by the JMS client
● the message body carries the payload of the message

● When a message is delivered, the properties and the body of the 
message are made read-only

Headers

Properties

Body
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Headers

● Every JMS message has a set of standard headers
● For each header there is a corresponding set and get method
● Most JMS headers are automatically assigned, i.e. their values are set 

by the JMS provider depending on declarations made by the 
developer

● Other headers must be set explicitly on the message before it is 
delivered by the producer
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Automatically Assigned Headers

JMSMessageID
● The JMSMessageID is a string value that uniquely identifies a message

JMSTimestamp
● The JMSTimestamp header is set automatically by the message 

producer when the message is sent

JMSDestination
● The JMSDestination header identifies the destination of a message 

with either a topic or a queue

JMSDeliveryMode
● A persistent message should be delivered once-and-only-once even if 

the JMS provider fails
● A non-persistent message is delivered at-most-once, which means 

that it can be lost if the JMS provider fails
● The delivery mode can be set on the message producer using the 

setJMSDeliveryMode() method (default is persistent)
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Automatically Assigned Headers (cont.)

JMSRedelivered
● The JMSRedelivered header indicates that a message was redelivered 

to the consumer
● A message may be marked redelivered if a consumer failed to 

acknowledge previous delivery of the message
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Developer-Assigned Headers

JMSType
● The JMSType header can be set by the message producer to identify 

the message structure and type of payload

JMSExpiration
● A message's expiration date prevents the message from being 

delivered to consumers after it has expired
● The expiration time can be set on the message producer using the 

setTimeToLive() method (by default a message doesn't expire)

JMSPriority
● The message server may use a message's priority to prioritize delivery 

to consumers
● Levels 0 to 4 are gradations of normal priority, levels 5 to 9 are 

gradations of expedited priority
● The priority can be set on the message producer using the 

setPriority() method (default is 4)
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Developer-Assigned Headers (cont.)

JMSReplyTo
● The JMSReplyTo header contains a destination to which the 

consumer of the message should reply to

JMSCorrelationID
● The JMSCorrelationID header is used for associating the current 

message with some previous message, e.g. to tag a message as a 
reply to a previous message
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Properties

● Properties are like additional headers that can be assigned to a 
message

● The value of a property can be a String, a primitive value or a wrapper 
object thereof

● There are three categories of properties:
● Application-specific properties are defined and applied to a 

message by the application developer
● JMS-defined properties act as optional JMS headers and are set 

by the JMS provider when the message is sent
● Provider-specific properties are proprietary properties that are 

defined by the JMS provider
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Message Types

● The message types represent the kind of payload a message can have
● Some types were included to support legacy payloads, other types 

were defined to facilitate emerging needs

Message TextMessage

ObjectMessage

BytesMessage

StreamMessage

MapMessage
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Message Types (cont.)

Message
● The type Message serves as the base interface of the other message 

types
● It contains only JMS headers and properties and is used for event 

notification

TextMessage
● The type TextMessage carries a String as its payload
● It is useful for exchanging simple text messages and more complex 

character data like XML documents

ObjectMessage
● The type ObjectMessage carries a serializable Java object as its 

payload
● The producer and consumer must be Java programs, and the class 

definition of the object has to be available to both of them
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Message Types (cont.)

BytesMessage
● The ByteMessage type carries an array of bytes as its payload
● It is useful for exchanging data in an application's native format or 

when the message payload is opaque to the JMS client

StreamMessage
● The StreamMessage type carries a stream of primitive Java types as 

its payload
● It keeps track of the order and types of primitives written to the 

message

MapMessage
● The MapMessage type carries a set of name-value pairs as its payload
● It is useful for delivering keyed data that may change from one 

message to the next



Programming Model
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Overview

Connection
Factory

Connection

SessionProducer Consumer Listener

MessageDestination Destination

JNDI
Context

*

*

* *

* These objects are thread-safe
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Administered Objects

● Connection factories and destinations are established and configured 
by the system administrator

● A JMS client can obtain access to connection factories and 
destinations by looking them up using JNDI

● JNDI is a standard Java extension that provides a uniform API for 
directory and naming services

● Creating a connection to a JNDI naming service requires an initial 
context be created with appropriate properties
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Connection Factories

● A connection factory is the object a client uses to create a connection 
with a JMS provider

● A connection factory encapsulates a set of connection configuration 
parameters (server address, port, protocol etc.)

● A JMS client usually performs a JNDI lookup of the connection factory
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Destinations

● A destination is the object a client uses as the target of messages it 
produces and the source of messages it consumes

● A JMS application may use multiple queues and/or topics
● A JMS client usually performs a JNDI lookup of the destination
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Connections

● A connection encapsulates a virtual connection with a JMS provider 
(e.g. a TCP/IP socket) and is used to create one or more sessions

● When an application completes any connections need to be closed, 
otherwise resources may not to be released by the JMS provider

● Before an application can consume messages, the connection's start() 
method must be called

● To stop message delivery temporarily without closing the connection, 
the stop() method can be called
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Sessions

● A session is used to create message producers, message consumers 
and messages

● A session may not be operated on by more than one thread at a time 
(single-threaded context)

● A session provides a transactional context with which to group sends 
and receives into an atomic unit of work

● A session defines the acknowledgment behavior of messages
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Message Producers

● A message producer is an object which is used for sending messages 
to a destination

● With an unidentified producer, the destination of a message can be 
specified when the message is sent
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Message Consumers

● A message consumer is an object which is used for receiving 
messages from a destination

● A message consumer allows a JMS client to register interest in a 
destination, and the JMS provider manages the delivery of messages 
to the registered consumers

● The receive() method is used to consume a message synchronously
● To consume messages asynchronously, a message listener is needed
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Message Listeners

● A message listener is an object that acts as an asynchronous event 
handler for messages

● A message listener implements the onMessage() method which 
defines the actions to be taken when a message arrives

● The message listener is registered with a specific message consumer
● A message listener is not specific to a particular destination type, 

however it usually expects a specific message type and format
● The session used to create the message consumer serializes the 

execution of all message listeners
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Message Selectors

● A message selector allows a JMS consumer to be selective about the 
messages it receives from a destination

● Message selectors use message properties and headers as criteria in 
conditional expressions (based on a subset of the SQL syntax for 
WHERE clauses)

● Message selectors are declared when the message consumer is 
created

● Messages that are not selected by a consumer are not delivered to 
that consumer but to other consumers
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Queue Browsers

● A queue browser is a specialized object that allows to peek ahead at 
pending messages on a queue without consuming them

● Queue browsing can be useful for monitoring the contents of a queue 
from an administrative tool

● Messages obtained from a queue browser only provide a snapshot of 
the queue's content
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Temporary Destinations

● A temporary destination is a destination that is dynamically created 
by a JMS client and only lives as long as the client lives

● A temporary destination is unavailable to other clients unless its 
identity is transferred in a JMSReplyTo message header

● While any client may send messages to a temporary destination, only 
the client that created the destination may receive messages from it

● The JMSReplyTo message header and temporary destinations can be 
used to create a synchronous request-reply conversation



Spring JMS
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Spring JMS Support

● Spring Boot automatically creates a ConnectionFactory and the bean 
JmsTemplate which simplifies synchronous JMS messaging

● To receive messages asynchronously, any method of a managed bean 
can be annotated with @JmsListener

● To trigger the discovery of such methods, a configuration class must 
be annotated with @EnableJms

@SpringBootApplication
@EnableJms
public class Application {
    @Autowired
    private JmsTemplate jmsTemplate;
    @JmsListener(...)
    public void onMessage(Message message) { ... }
    ...
}
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Spring JMS Support (cont.)

● By default, Spring Boot uses queues, but to use topics the property 
spring.jms.pub-sub-domain can be set

● When using ActiveMQ Artemis as a message broker, its URL can be 
configured via the property spring.artemis.broker-url

spring.jms.pub-sub-domain=true
spring.artemis.broker-url=tcp://localhost:61616



41

Sending Messages

● A message can be sent to a destination using the send() method of 
the Spring JMS template and by providing a message creator

jmsTemplate.send(destination, session -> {
    Message message = session.createTextMessage(text);
    ...
    return message;
});

● If the message body can be converted by a configured message 
converter, the message can be sent using the convertAndSend() 
method

jmsTemplate.convertAndSend(destination, text);
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Receiving Messages

● A message can be received from a destination using the receive() 
method of the Spring JMS template

● The method blocks until the message becomes available or the 
configured timeout is exceeded

Message message = jmsTemplate.receive(destination);
String text = ((TextMessage) message).getText();
...

● If the message body can be converted by a configured message 
converter, a message can be received using the receiveAndConvert() 
method

String text = (String) jmsTemplate.receiveAndConvert(destination);
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Asynchronously Receiving Messages

● A message can asynchronously be received from a destination by 
annotating a callback method with @JmsListener

@JmsListener(destination = "...")
public void onMessage(Message message) {
    String text = ((TextMessage) message).getText();
    ...
}

● If the message body can be converted by a configured message 
converter, the type of the body can be used as parameter type

@JmsListener(destination = "...")
public void onMessage(String text) {
    ...
}

● The annotation’s concurrency element can be used to define the 
number of concurrent consumers (default is 1)
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Selectively Receiving Messages

● Messages can selectively be received from a destination by providing 
a selector to the receive() method or by using the selector attribute 
of the @JmsListener annotation

Message message = jmsTemplate.receive(destination, selector);
String text = ((TextMessage) message).getText();
...

@JmsListener(destination = "...", selector = "...")
public void onMessage(Message message) {
    String text = ((TextMessage) message).getText();
    ...
}
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Message Converter

● By default, the SimpleMessageConverter is able to handle messages 
of type TextMessage, BytesMessage, MapMessage and 
ObjectMessage

● A custom message converter can be provided by implementing the 
MessageConverter interface

@Component
public class CustomMessageConverter implements MessageConverter {
    public Object fromMessage(Message message) 
        throws JMSException, MessageConversionException {
        ...
    }
    public Message toMessage(Object object, Session session)
        throws JMSException, MessageConversionException { 
        ...
    }
}
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JSON Message Converter

● Spring JMS provides the MappingJackson2MessageConverter that can 
convert messages to and from JSON

● The converter must be configured using a type ID property and ID to 
class mappings to allow conversion of different message types

@Configuration
public class JmsConfig {
    @Bean
    public MessageConverter jacksonJmsMessageConverter() {
        MappingJackson2MessageConverter converter =
            new MappingJackson2MessageConverter();
        converter.setTargetType(MessageType.TEXT);
        converter.setTypeIdPropertyName("typeId");
        converter.setTypeIdMappings(...);
        return converter;
    }
}
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Sending Messages and Receiving Replies

● The method sendAndReceive() can be used to send a request 
message to a destination and to receive a reply message

● A temporary queue is created and set in the JMSReplyTo header of 
the request message

Message reply = jmsTemplate.sendAndReceive(destination,
    session -> session.createTextMessage(text)
);
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Sending Reply Messages

● Replies to request messages are sent to the temporary queue 
provided in the request's JMSReplyTo header

● Optionally, the JMSCorrelationID header of the reply message can be 
set to the request's message identifier

jmsTemplate.send(request.getJMSReplyTo(),
    session -> {
        TextMessage reply = session.createTextMessage(text);
        reply.setJMSCorrelationID(request.getJMSMessageID());
        return reply;
    });
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