
Java Message Service
Stephan Fischli

Winter 2022

2

Goals

● Understand the messaging paradigm
● Know the different JMS messaging models
● Develop a Spring application using JMS

3

Contents

● Introduction
● Messages
● Programming Model
● Spring JMS

Introduction

5

Messaging versus RPC

● When a remote method is invoked, the caller is blocked until the
method completes

● The synchronized nature of RPC tightly couples the client to the
server and creates highly interdependent systems

● Messaging applications exchange messages through virtual channels
called destinations so that senders and receivers are not bound to
each other

● Messages are delivered asynchronously, i.e. the sender is not
required to wait for the message to be received by the recipient

Producer Destination Consumer

6

Messaging Systems

● Messaging systems allow two or more applications to exchange
information in the form of messages

● A message is a self-contained package of business data and network
routing headers

● Messaging systems provide fault tolerance, load balancing, scalability,
and transactional support

Messaging
System

Application Application

Application Application

7

Java Message Service

● Messaging systems use different message formats and network
protocols (TCP/IP, HTTP, SSL, IP multicast), but the basic semantics
are the same

● The Java Message Service (JMS) is a standardized API for sending and
receiving messages that can be used with many different messaging
systems

Application

Java Message Service

IBM
MQSeries

Progress
SonicMQ

BEA
WebLogic ...

8

Publish-Subscribe Domain

● In the publish-and-subscribe domain, a producer can send a message
to many consumers through a destination called topic

● Consumers can subscribe to a topic and receive a copy of each
message

● Messages are usually broadcast to consumers (push-based model)
● A topic retains messages only as long as it takes to deliver them to

the current subscribers
● There is a timing dependency between publishers and subscribers

Publisher Topic

Subscriber

Subscriber

9

Point-to-Point Domain

● In the point-to-point domain, a producer can send a message to one
consumer through a destination called queue

● A given queue may have multiple receivers, but only one receiver
may consume each message

● Messages are usually requested from the queue (pull-based model)
● A queue delivers messages in the order they were placed into it
● A queue retains messages until they are consumed or expire
● There is no timing dependency between senders and receivers

Sender Queue

Receiver

Receiver

10

Guaranteed Delivery

● Messaging systems provide guaranteed delivery which ensures that
the intended consumers will eventually receive a message even if a
partial failure occurs

● Guaranteed delivery uses store-and-forward mechanism, i.e. the
message server writes the incoming messages to a persistent store
and then forwards them to the intended consumers

● If the message server crashes, it will deliver the persistent messages
to consumers as soon as it starts up again

Producer Message
Server Consumer

Persistent
Store

11

Message Acknowledgment

● Message acknowledgment is part of the protocol between the client
runtime library of the JMS provider and the message server

● The server acknowledges the receipt of messages from producers,
consumers acknowledge the receipt of messages from the server

● The acknowledgment protocol allows the JMS provider to manage
the distribution of messages and guarantee their delivery

● If a consumer fails to acknowledge a message, the server considers
the message undelivered and will attempt to redeliver it

Producer Message
Server Consumer

12

Transactional Messaging

● A JMS client can group multiple send or receive operations into an
atomic unit of work

● With transactional sends, messages delivered to the server are not
forwarded to the consumers until the producer commits the
transaction

● With transactional receives, messages delivered to the consumer are
not deleted by the server until the consumer commits the transaction

● JMS supports distributed transactions across different transactional
resources using the two-phase commit protocol (2PC)

13

References

● Mark Richards and Richard Monson-Haefel
Java Message Service (2nd Edition)
Creating Distributed Enterprise Applications
O'Reilly & Associates, 2009

● Scott Grant (Editor)
Professional JMS Programming
Wrox Press Inc, 2001

● Mark Hapner et.al.
Java Message Service API Tutorial and Reference
Addison Wesley Professional, 2002

Messages

15

Anatomy of a JMS Message

● A JMS message carries application data and provides event
notification

● A JMS message has three parts:
● the message headers provide metadata and routing information
● the message properties are defined by the JMS client
● the message body carries the payload of the message

● When a message is delivered, the properties and the body of the
message are made read-only

Headers

Properties

Body

16

Headers

● Every JMS message has a set of standard headers
● For each header there is a corresponding set and get method
● Most JMS headers are automatically assigned, i.e. their values are set

by the JMS provider depending on declarations made by the
developer

● Other headers must be set explicitly on the message before it is
delivered by the producer

17

Automatically Assigned Headers

JMSMessageID
● The JMSMessageID is a string value that uniquely identifies a message

JMSTimestamp
● The JMSTimestamp header is set automatically by the message

producer when the message is sent

JMSDestination
● The JMSDestination header identifies the destination of a message

with either a topic or a queue

JMSDeliveryMode
● A persistent message should be delivered once-and-only-once even if

the JMS provider fails
● A non-persistent message is delivered at-most-once, which means

that it can be lost if the JMS provider fails
● The delivery mode can be set on the message producer using the

setJMSDeliveryMode() method (default is persistent)

18

Automatically Assigned Headers (cont.)

JMSRedelivered
● The JMSRedelivered header indicates that a message was redelivered

to the consumer
● A message may be marked redelivered if a consumer failed to

acknowledge previous delivery of the message

19

Developer-Assigned Headers

JMSType
● The JMSType header can be set by the message producer to identify

the message structure and type of payload

JMSExpiration
● A message's expiration date prevents the message from being

delivered to consumers after it has expired
● The expiration time can be set on the message producer using the

setTimeToLive() method (by default a message doesn't expire)

JMSPriority
● The message server may use a message's priority to prioritize delivery

to consumers
● Levels 0 to 4 are gradations of normal priority, levels 5 to 9 are

gradations of expedited priority
● The priority can be set on the message producer using the

setPriority() method (default is 4)

20

Developer-Assigned Headers (cont.)

JMSReplyTo
● The JMSReplyTo header contains a destination to which the

consumer of the message should reply to

JMSCorrelationID
● The JMSCorrelationID header is used for associating the current

message with some previous message, e.g. to tag a message as a
reply to a previous message

21

Properties

● Properties are like additional headers that can be assigned to a
message

● The value of a property can be a String, a primitive value or a wrapper
object thereof

● There are three categories of properties:
● Application-specific properties are defined and applied to a

message by the application developer
● JMS-defined properties act as optional JMS headers and are set

by the JMS provider when the message is sent
● Provider-specific properties are proprietary properties that are

defined by the JMS provider

22

Message Types

● The message types represent the kind of payload a message can have
● Some types were included to support legacy payloads, other types

were defined to facilitate emerging needs

Message TextMessage

ObjectMessage

BytesMessage

StreamMessage

MapMessage

23

Message Types (cont.)

Message
● The type Message serves as the base interface of the other message

types
● It contains only JMS headers and properties and is used for event

notification

TextMessage
● The type TextMessage carries a String as its payload
● It is useful for exchanging simple text messages and more complex

character data like XML documents

ObjectMessage
● The type ObjectMessage carries a serializable Java object as its

payload
● The producer and consumer must be Java programs, and the class

definition of the object has to be available to both of them

24

Message Types (cont.)

BytesMessage
● The ByteMessage type carries an array of bytes as its payload
● It is useful for exchanging data in an application's native format or

when the message payload is opaque to the JMS client

StreamMessage
● The StreamMessage type carries a stream of primitive Java types as

its payload
● It keeps track of the order and types of primitives written to the

message

MapMessage
● The MapMessage type carries a set of name-value pairs as its payload
● It is useful for delivering keyed data that may change from one

message to the next

Programming Model

26

Overview

Connection
Factory

Connection

SessionProducer Consumer Listener

MessageDestination Destination

JNDI
Context

*

*

* *

* These objects are thread-safe

27

Administered Objects

● Connection factories and destinations are established and configured
by the system administrator

● A JMS client can obtain access to connection factories and
destinations by looking them up using JNDI

● JNDI is a standard Java extension that provides a uniform API for
directory and naming services

● Creating a connection to a JNDI naming service requires an initial
context be created with appropriate properties

28

Connection Factories

● A connection factory is the object a client uses to create a connection
with a JMS provider

● A connection factory encapsulates a set of connection configuration
parameters (server address, port, protocol etc.)

● A JMS client usually performs a JNDI lookup of the connection factory

29

Destinations

● A destination is the object a client uses as the target of messages it
produces and the source of messages it consumes

● A JMS application may use multiple queues and/or topics
● A JMS client usually performs a JNDI lookup of the destination

30

Connections

● A connection encapsulates a virtual connection with a JMS provider
(e.g. a TCP/IP socket) and is used to create one or more sessions

● When an application completes any connections need to be closed,
otherwise resources may not to be released by the JMS provider

● Before an application can consume messages, the connection's start()
method must be called

● To stop message delivery temporarily without closing the connection,
the stop() method can be called

31

Sessions

● A session is used to create message producers, message consumers
and messages

● A session may not be operated on by more than one thread at a time
(single-threaded context)

● A session provides a transactional context with which to group sends
and receives into an atomic unit of work

● A session defines the acknowledgment behavior of messages

32

Message Producers

● A message producer is an object which is used for sending messages
to a destination

● With an unidentified producer, the destination of a message can be
specified when the message is sent

33

Message Consumers

● A message consumer is an object which is used for receiving
messages from a destination

● A message consumer allows a JMS client to register interest in a
destination, and the JMS provider manages the delivery of messages
to the registered consumers

● The receive() method is used to consume a message synchronously
● To consume messages asynchronously, a message listener is needed

34

Message Listeners

● A message listener is an object that acts as an asynchronous event
handler for messages

● A message listener implements the onMessage() method which
defines the actions to be taken when a message arrives

● The message listener is registered with a specific message consumer
● A message listener is not specific to a particular destination type,

however it usually expects a specific message type and format
● The session used to create the message consumer serializes the

execution of all message listeners

35

Message Selectors

● A message selector allows a JMS consumer to be selective about the
messages it receives from a destination

● Message selectors use message properties and headers as criteria in
conditional expressions (based on a subset of the SQL syntax for
WHERE clauses)

● Message selectors are declared when the message consumer is
created

● Messages that are not selected by a consumer are not delivered to
that consumer but to other consumers

36

Queue Browsers

● A queue browser is a specialized object that allows to peek ahead at
pending messages on a queue without consuming them

● Queue browsing can be useful for monitoring the contents of a queue
from an administrative tool

● Messages obtained from a queue browser only provide a snapshot of
the queue's content

37

Temporary Destinations

● A temporary destination is a destination that is dynamically created
by a JMS client and only lives as long as the client lives

● A temporary destination is unavailable to other clients unless its
identity is transferred in a JMSReplyTo message header

● While any client may send messages to a temporary destination, only
the client that created the destination may receive messages from it

● The JMSReplyTo message header and temporary destinations can be
used to create a synchronous request-reply conversation

Spring JMS

39

Spring JMS Support

● Spring Boot automatically creates a ConnectionFactory and the bean
JmsTemplate which simplifies synchronous JMS messaging

● To receive messages asynchronously, any method of a managed bean
can be annotated with @JmsListener

● To trigger the discovery of such methods, a configuration class must
be annotated with @EnableJms

@SpringBootApplication
@EnableJms
public class Application {
 @Autowired
 private JmsTemplate jmsTemplate;
 @JmsListener(...)
 public void onMessage(Message message) { ... }
 ...
}

40

Spring JMS Support (cont.)

● By default, Spring Boot uses queues, but to use topics the property
spring.jms.pub-sub-domain can be set

● When using ActiveMQ Artemis as a message broker, its URL can be
configured via the property spring.artemis.broker-url

spring.jms.pub-sub-domain=true
spring.artemis.broker-url=tcp://localhost:61616

41

Sending Messages

● A message can be sent to a destination using the send() method of
the Spring JMS template and by providing a message creator

jmsTemplate.send(destination, session -> {
 Message message = session.createTextMessage(text);
 ...
 return message;
});

● If the message body can be converted by a configured message
converter, the message can be sent using the convertAndSend()
method

jmsTemplate.convertAndSend(destination, text);

42

Receiving Messages

● A message can be received from a destination using the receive()
method of the Spring JMS template

● The method blocks until the message becomes available or the
configured timeout is exceeded

Message message = jmsTemplate.receive(destination);
String text = ((TextMessage) message).getText();
...

● If the message body can be converted by a configured message
converter, a message can be received using the receiveAndConvert()
method

String text = (String) jmsTemplate.receiveAndConvert(destination);

43

Asynchronously Receiving Messages

● A message can asynchronously be received from a destination by
annotating a callback method with @JmsListener

@JmsListener(destination = "...")
public void onMessage(Message message) {
 String text = ((TextMessage) message).getText();
 ...
}

● If the message body can be converted by a configured message
converter, the type of the body can be used as parameter type

@JmsListener(destination = "...")
public void onMessage(String text) {
 ...
}

● The annotation’s concurrency element can be used to define the
number of concurrent consumers (default is 1)

44

Selectively Receiving Messages

● Messages can selectively be received from a destination by providing
a selector to the receive() method or by using the selector attribute
of the @JmsListener annotation

Message message = jmsTemplate.receive(destination, selector);
String text = ((TextMessage) message).getText();
...

@JmsListener(destination = "...", selector = "...")
public void onMessage(Message message) {
 String text = ((TextMessage) message).getText();
 ...
}

45

Message Converter

● By default, the SimpleMessageConverter is able to handle messages
of type TextMessage, BytesMessage, MapMessage and
ObjectMessage

● A custom message converter can be provided by implementing the
MessageConverter interface

@Component
public class CustomMessageConverter implements MessageConverter {
 public Object fromMessage(Message message)
 throws JMSException, MessageConversionException {
 ...
 }
 public Message toMessage(Object object, Session session)
 throws JMSException, MessageConversionException {
 ...
 }
}

46

JSON Message Converter

● Spring JMS provides the MappingJackson2MessageConverter that can
convert messages to and from JSON

● The converter must be configured using a type ID property and ID to
class mappings to allow conversion of different message types

@Configuration
public class JmsConfig {
 @Bean
 public MessageConverter jacksonJmsMessageConverter() {
 MappingJackson2MessageConverter converter =
 new MappingJackson2MessageConverter();
 converter.setTargetType(MessageType.TEXT);
 converter.setTypeIdPropertyName("typeId");
 converter.setTypeIdMappings(...);
 return converter;
 }
}

47

Sending Messages and Receiving Replies

● The method sendAndReceive() can be used to send a request
message to a destination and to receive a reply message

● A temporary queue is created and set in the JMSReplyTo header of
the request message

Message reply = jmsTemplate.sendAndReceive(destination,
 session -> session.createTextMessage(text)
);

48

Sending Reply Messages

● Replies to request messages are sent to the temporary queue
provided in the request's JMSReplyTo header

● Optionally, the JMSCorrelationID header of the reply message can be
set to the request's message identifier

jmsTemplate.send(request.getJMSReplyTo(),
 session -> {
 TextMessage reply = session.createTextMessage(text);
 reply.setJMSCorrelationID(request.getJMSMessageID());
 return reply;
 });

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

