&
o
O
N
=o)
l
©
O
—“—
o
il
=
2
>
_I\i
O
S
©
(S}
Y
()
o
()
)
(e)
=
o)
()
O

www.dzone.com

Getting Started with UML

.~ !DZone Refcardz

= About UML

= Structural Diagrams
* Behavioral Diagrams
* Interaction Diagrams
* Hot Tips and more...

Getting Started with UML

By James Sugrue

ABOUT UML

The Unified Modeling Language is a set of rules and notations
for the specification of a software system, managed and
created by the Object Management Group. The notation
provides a set of graphical elements to model the parts of
the system.

This Refcard outlines the key elements of UML to provide you
with a useful desktop reference when designing software.

UML Tools
There are a number of UML tools available, both

commercial and open source, to help you document
your designs. Standalone tools, plug-ins and UML
editors are available for most IDEs.

Diagram Types
UML 2 is composed of 13 different types of diagrams as
defined by the specification in the following taxonomy.

STRUCTURAL DIAGRAMS

Class Diagrams

Class diagrams describe the static structure of the classes
in your system and illustrate attributes, operations and
relationships between the classes.

Modeling Classes
The representation of a class has three compartments.

«interfacex
Person

name: String
age: int

+ toString(: String

Figure 1: Class representation

From top to bottom this includes:

e Name which contains the class name as well as the
stereotype, which provides information about this
class. Examples of stereotypes include <<interface>>,
<<abstract>> or <<controller>>.

e Attributes lists the class attributes in the format
name: type, with the possibility to provide initial values
using the format name: type=value

* Operations lists the methods for the class in the format
method( parameters):return type.

Operations and attributes can have their visibility annotated as
follows: + public, # protected, - private, ~ package

Interfaces

winterfacen
Inferfacel

Interface names and operations are | ==
usually represented in italics.

Relationship | Description
Dependency A weak, usually transient, relationship that illustrates that a
class uses another class at some point.
“..usesa..”
Classh ClassE
------- =
Figure 2: ClassA has dependency on ClassB
Association Stronger than dependency, the solid line relationship
indicates that the class retains a reference to another class
“...hasa.” over time.
ClassA ClassB
Figure 3: ClassA associated with ClassB
Aggregation More specific than association, this indicates that a class is a
container or collection of other classes. The contained classes
“...ownsa..." do not have a life cycle dependency on the container, so
when the container is destroyed, the contents are not. This is
depicted using a hollow diamond.
Company Empl oyee
Figure 4: Company contains Employees

~. Don’t Miss An Issue!
~ Get over 90 DZone Refcardz
FREE from Refcardz.com!

Visit Refcardz.com to get them all Free!

DZone, Inc. | www.dzone.com



http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
http://www.refcardz.com
http://www.refcardz.com

/1 DZone Refcardz

Getting Started with UML

Composition More specific than aggregation, this indicates a strong life
cycle dependency between classes, so when the container is
“..ispartof..” | destroyed, so are the contents. This is depicted using a filled
diamond.
indonw StatusBar

Figure 5: StatusBar is part of a Window

Generalization
“isa...”

Also known as inheritance, this indicates that the subtype is a
more specific type of the super type. This is depicted using a
hollow triangle at the general side of the relationship.

Car Ford

i ——

Figure 6: Ford is a more specific type of Car

Association Classes
Sometimes more complex relationships exist between classes,
where a third class contains the association information.

Bank Person
customer of

Account

- person: Person
- branch: Bank

Figure 7: Account associates the Bank with a Person

Annotating relationships

For all the above relationships, direction and multiplicity can
be expressed, as well as an annotation for the relationship.
Direction is expressed using arrows, which may be bi-directional.

The following example shows a multiple association, between
ClassA and ClassB, with an alias given to the link.

ClassA ClassB

Figure 8: Annotating class relationships

Relationships can also be annotated with constraints to
illustrate rules, using {} (e.g. {ordered}).

Notes
Notes or comments are used across all
UML diagrams. They used to hold useful

information for the diagram, such as
explanations or code samples, and can
be linked to entities in the diagram.

Object Diagrams

Object diagrams provide information about the relationships
between instances of classes at a particular point in time. As
you would expect, this diagram uses some elements from class
diagrams.

Typically, an object instance is modeled using a simple
rectangle without compartments, and with underlined text of
the format InstanceName:Class

customer: Person

myAccount :Account
+ accountNumber= 101010

Figure 9: A simple object diagram

The object element may also have extra information to model
the state of the attributes at a particular time, as in the case of
myAccount in the above example.

Component Diagrams

Component diagrams are used to illustrate how components
of a system are wired together at a higher level of abstraction
than class diagrams. A component could be modeled by one
or more classes.

A component is modeled in a rectangle with the
<<component>> classifier and an optional component icon:

AccountManagement

Figure 10: UML representation of a single component

Assembly Connectors
The assembly connector can be used when one component
needs to use the services provided by another.

AccourtManagement C CreditChecker

Figure 11: AccountManagement depends on the CreditChecker services

Using the ball and socket notation, required or provided
interfaces are illustrated as follows

Requiredinterface Component ProvidedInterface

Figure 12: Required and provided interface notation

Port Connectors

Ports allow you to model the functionality that is exposed to
the outside world, grouping together required and provided
interfaces for a particular piece of functionality. This is
particularly useful when showing nested components.

g

AccountManagement

Account History

1
OnlineSenvices
0.7

Transaction

VerificationSenices

Online Servicelmpl

Figure 13: Nested component diagram showing use of ports

Composite Structure Diagrams
Composite structure diagrams show the internal structure of a
class and the collaborations that are made possible.

The main entities in a composite structure diagram are parts,
ports, connectors, collaborations, as well as classifiers.

DZone, Inc. | www.dzone.com



http://www.dzone.com
http://www.refcardz.com

/-1 DZone Refcardz

Getting Started with UML

Parts

Represent one or more instances owned by the containing
instance. This is illustrated using simple rectangles within the
owning class or component. Relationships between parts may

also be modeled.

Diagram

Figure 14: Diagram class with a Square and Line as part of its structure

Ports

Represent externally visible parts of the structure. They are

shown as named rectangles at the boundary of the owning

structure. As in component diagrams, a port can specify the
required and provided services.

Connectors

Connectors bind entities together, allowing them to interact
at runtime. A solid line is typically drawn between parts. The
name and type information is added to the connector using a
name:classname format. Multiplicity may also be annotated on

the connector.
- — -
Part1 Part2

Figure 15: A connector between two parts

Collaborations

Represents a set of roles that can be used together to achieve
some particular functionality. Collaborations are modeled using
a dashed ellipse.

Figure 16: Collaboration between a number ot entities

Modeling Patterns Using Collaborations
Sometimes a collaboration will be an
implementation of a pattern. In such

cases a collaboration is labeled with the
pattern and each part is linked with a
description of its role in the problem.

Deployment Diagrams

Deployment diagrams model the runtime architecture of the
system in a real world setting. They show how software entities
are deployed onto physical hardware nodes and devices.

Association links between these entities represent
communication between nodes and can include multiplicity.

Entity

Node Either a hardware or software element shown as a 3D box
shape. Nodes can have many stereotypes, indicated by an
appropriate icon on the top right hand corner.

Description

Serwer

An instance is made different to a node by providing an
underlined “name:node type"” notation.

Artifact

An artifact is any product of software development, including
source code, binary files or documentation. It is depicted
using a document icon in the top right hand comer.

“Server Database

«execution environments e

logging jar [

Figure 17: Deployment diagram example

Package Diagrams

Package diagrams show the organization of packages and the
elements inside provide a visualization of the namespaces that
will be applied to classes. Package diagrams are commonly
used to organize, and provide a high level overview of, class
diagrams.

As well as standard dependencies, there are two specific
types of relationships used for package diagrams. Both are
depicted using the standard dashed line dependency with the
appropriate stereotype (import or merge).

 Package Import
Used to indicate that the importing namespace adds
the names of the members of the package to its
own namespace. This indicates that the package can
access elements within another package. Unlabeled
dependencies are considered imports.

® Package Merge
Used to indicate that the contents of both packages
are combined in a similar way to the generalization

relationship. T —

1

[ + FileCopier
5 + 1outis

Figure 18: Package merge example

BEHAVIORAL DIAGRAMS

Use Case Diagrams

Use case diagrams are a useful, high level communication tool
to represent the requirements of the system. The diagram
shows the interaction of users and other external entities with

the system that is being developed.

Graphical Elements
Entity

Description

Actor Actors represent external entities in the system and can be
human, hardware or other systems. Actors are drawn using
a stick figure. Generalization relationships can be used to

represent more specific types of actors, as in the example.

Use Case A use case represents a unit of functionality that can interact
with external actors or related to other use cases. Use cases
are represented with a ellipse with the use case name inside.
Boundary Use cases are contained within a system boundary, which is

depicted using a simple rectangle. External entities must not
be placed within the system boundary

Graphical Elements

Notation Description

Includes lllustrates that a base use case may include another, which
[ implies that the included use case behavior is inserted into

the behavior of the base use case.

DZone, Inc. | www.dzone.com



http://www.dzone.com
http://www.refcardz.com

/-1 DZone Refcardz

Getting Started with UML

lllustrates that a particular use case provides additional
functionality to the base use case, in some alternative flows.
This can be read to mean that it's not required to complete
the goal of the base use case.

Graphical Elements

Section

Description

Generalization

Used when there is a common use case that provides basic
functionality that can be used by a more specialized use case.

Action

v System
Everts

Represents one step in the program flow, illustrated using a
rounded rectangle.

Multiplicity
Like normal relationships, all use case relationships
can include multiplicity annotations.

Monitoring Sysem

Ostabaze

O

Figure 19: A simple use case diagram

Documenting Use Cases
Behind each use case there should be some text describing it.
The following are typical sections in a use case definition:

Constraints

Action constraints are linked to an action in a note with text
of the format <<stereotype>>{constraint}

Start Node
@

start

The start node is used to represent where the flow begins.
This is illustrated using a single back spot.

®

end

Activity Final Node

Represents the end of all control flows within the activity.

©

complets flow

Flow Final Node

Represents the end of a single flow.

e

Control Flow

Represents the flow of control from one action to the next
as a solid line with an arrowhead.

Parse system

a3

Object Flow

If an object is passed between activities, a representation
of the object can be added in between the activities.

Itis also possible represent object flow by adding a square
representing the object on either side of the control flow.

Section Description
Name and Use cases are should have verb names, and have a brief
Description description.

An annotated diamond shape is used to represent
decisions in the control flow. This can also be used to
merge flows.

A decision node will have a condition documented that
needs to be met before that path can be taken.

Requirements

This could be a link to an external formal specification, or an
internal listing of the requirements that this use case will fulfill.

Constraints The pre and post conditions that apply to this use case’s
execution.
Scenarios The flow of events that occur during the execution of the use

case. Typically this starts with one positive path, with a number of
alternative flows referenced.

Activity Diagrams

Activity diagrams capture the flow of a program, including
major actions and decision points. These diagrams are useful
for documenting business processes.

stirt

View System §
Everts

«Pre-conditions
{user logged in}

Show Read Only

T —— %
end o

Chedk|User Access

[user has admin aceess]

Show Adrmin
Console

citerative:

J
Parse System Events {pispiay Events
Input
Events

Parse System Events

Show Previous

Figure 20: Activity diagram

Partition

Fork Node Represented using a horizontal or vertical bar, a fork
node illustrates the start of concurrent threads. The same
notation can be used for the joining of concurrent threads.
Swimlanes can be used in activity diagrams to illustrate

activities performed by different actors.

Regions are used to group certain activities together. A
stereotype is applied to the region to identify whether it is
iterative or parallel. Regions are illustrated using a dotted
rounded rectangle.

State Machine Diagrams

State machine diagrams are used to describe the state
transitions of a single object’s lifetime in response to events.
State machine diagrams are modeled in a similar way to activity

diagrams.
Entity Description
State States model a moment in time for the behavior of a classifier. It
W is illustrated using a rounded rectangle.
Initial Post Represents the beginning of the execution of this state
@ machine. lllustrated using a filled circle.
Entry Point In cases when it is possible to enter the state machine at a later
O stage than the initial state this can be used. lllustrated using an
Cuiek Start empty circle.
Final State Represents the end of the state machine execution.
0 Represented using a circle containing a black dot.
Final
Exit Point Represents alternative end points to the final state, of the state
® machine. lllustrated using a circle with a X.
ExitPoint

DZone, Inc. | www.dzone.com



http://www.dzone.com
http://www.refcardz.com

/1 DZone Refcardz

Getting Started with UML

Transition Represented as a line with an arrowhead. Transitions illustrate
N movement between states. They can be annotated with a
Trigger[Guard]/Effect notation. States may also have self
transitions, useful for iterative behavior.
State A state can also be annotated with any number of trigger/effect

pairs, which is useful when the state has a number of transitions.

Nested States | States can themselves contain internal state machine diagrams.

State Choice | A decision is illustrated using a diamond, with a number of

— transitions leaving from the choice element.
State junction | Junctions are used to merge a number of transitions from
() different states. A junction is illustrated using a filled circle.
—J

SNy
 J
Terminate Indicates that the flow of the state machine has ended,
State illustrated using an X
X

Teminate

History State | History states can be used to model state memory, where the

o) state resumes from where it was last time. This is drawn using a

State Memory circle with a H inside.

Concurrent
Region

A state can have multiple substates executing concurrently,
which is modeled using a dashed line to separate the parallel
tracks. Forks and merges (see activity diagram) are used to split/
merge transitions.

Transitions: Triggers, Guards, Effects

Triggers cause the transition, which is usually a
change in condition. A guard is a condition that must
evaluate to true before the transition can execute.
Effect is an action that will be invoked on that object.

INTERACTION DIAGRAMS

Interaction diagrams are a subset of behavioral diagrams that

deal with the flow of control across the modeled system.

Sequence Diagrams

Sequence diagrams describe how entities interact, including
what messages are used for the interactions. All messages are
described in the order of execution.

Along with class and use case, sequence diagrams are the
most used diagrams for modeling software systems.

Lifeline Objects

A sequence diagram is made up of a number of lifelines. Each
entity gets its own column. The element is modeled at the top
of the column and the lifeline is continued with a dashed line.
The following are the options for lifeline objects, with the final
three the being most specific.

Entity Description
Actor Actors represent external entities in the system. They can be
/?\ human, hardware or other systems.

' Actors are drawn using a stick figure.

General Lifeline | Represents an individual entity in the sequence diagram,
displayed as a rectangle. It can have a name, stereotype or

could be an instance (using instance:class)

Boundary Boundary elements are usually at the edge of the system,
@ such as user interface, or back-end logic that deals with
external systems.

Boundary

Control Controller elements manage the flow of information for a
scenario. Behavior and business rules are typically managed
o by such objects.
Entity Entities are usually elements that are responsible for holding
@ data or information. They can be thought of as beans, or

model objects.

Entity

Swimlanes
Swimlanes can be used to break up a sequence

diagram into logical layers. A swimlane can contain
any number of lifelines.

Messages

The core of sequence diagrams are the messages that are
passed between the objects modeled. Messages will usually be
of the form messagename(parameter).

A thin rectangle along the lifeline illustrates the execution
lifetime for the object’'s messages.

Messages can be sent in both directions, and may skip past
other lifelines on the way to the recipient.

Entity Description
Synchronous A message with a solid arrowhead at the end. If the
O e ™0 | Message is a return message it appears as a dashed line
‘ K ‘ )
' " | rather than solid.
Asynchronous A message with a line arrowhead at the end. If the
| nsmonamesspsniesee mp e | MESSAGE IS @ return message it appears as a dashed line
m— O .
rather than solid.
Lost A lost message is one that gets sent to an unintended
ﬁl%’ receiver, or to an object that is not modeled in the
' diagram. The destination for this message is a black dot.
Found A found message is one that arrives from an unknown
[e—tumime=se g, | sender, or from an object that is not modeled in the
diagram. The unknown part is modeled as a black dot.
Self Message A self message is usually a recursive call, or a call to
another method belonging to the same object.

Managing Object Lifecycle
Objects don’t need to all appear
along the top of the sequence
diagram. When a message is
sent to create an object, the

element’s lifeline can begin at
the end of that message.

To terminate the lifeline, simply
use an X at the end of the
dashed line.

Fragments
Fragments are sections of logic that are executed given a

DZone, Inc. | www.dzone.com



http://www.dzone.com
http://www.refcardz.com

A Dzone Refcal‘dZ ‘ Getting Started with UML

particular condition. These fragments can be of many different are defined in free form instead of lifelines. The focus of this
types. diagram is object relationships between boundary, control and
entity types.

Entity Description
alt Models if then else blocks Messages between the participants are numbered to provide
sequencing information.

opt Models switch statements
break For alternative sequence of events %%
par Concurrent blocks st wizsrd
seg Set of messages to be processed in any order before continuing R file
1.3 createP rojectFile
strict Set of messages to be processed in strict order before continuing &
neg Invalid set of messages ProjecCantoler
o " . Figure 22: Simple communication diagram
critical Critical section
ignore Messages of no interest Interaction Overview Diagrams

An interaction overview diagram is a form of activity diagram
where each node is a link to another type of interaction

consider The opposite to ignore.

assert Will not be shown if the assertion is invalid . . ) ) .
diagram. This provides a useful way to give high level
loop Loop fragment . . . .
overviews or indexes of the key diagrams in your system.
FileParser ‘ ‘ File ‘ h
Toop tieteraor Prest reson Seuerce
rezch e i vciony
| parseFileContent)
"0
3 S =
Figure 21: Sequence Diagram Fragment
Communication Diagrams 7 mensenoner
Also known as a collaboration diagram, communication
diagrams are similar to sequence diagrams, except that they Figure 23: Interaction Overview Diagram
ABOUT THE AUTHORS RECOMMENDED BOOK

Designers Erich Gamma, Richard Helm, Ralph Johnson,
and John M. Vlissides put together this excellent guide to
offer simple solutions to common design problems. They
first describe what patterns are and how they can help

you design object-oriented software. Then they cover how
patterns fit into the development process and how they
can be leveraged to efficiently solve design problems. Each
pattern discussed is from a real system and is based on a

James Sugrue has been editor at both Javalobby Desion Patterns
and Eclipse Zone for over two years, and loves every
minute of it. By day, James is a software architect at

Pilz Ireland, developing killer desktop software using
Java and Eclipse all the way. While working on desktop
technologies such as Eclipse RCP and Swing, James also
likes meddling with up and coming technologies such

as Eclipse e4. His current obsession is developing for
the iPhone and iPad, having convinced himself that it's a turning point for the real-world example.

software industry. BUY NOW
books.dzone.com/books/design-patterns-elements

Reusable
nied. Soitware

ko

Getting Started with

Cloud Computing

 Daniel Fubio

- = Browse our collection of over 100 Free Cheat Sheets
k Upcoming Refcardz

Network Security

Free PDF

Subversion
DZone, Inc.
. ISBN-13: 978-1-934238-75-2
140 Preston Executive Dr. ISBN-10: 1-934238-75-9
Suite 100 50795
Cary, NC 27513
DZone communities deliver over 6 million pages each month to 888.678.0399
more than 3.3 million software developers, architects and decision 919.678.0300
makers. DZone offers something for everyone, including news, Refcardz Feedback Welcome g
. . refcardz@dzone.com i ~
tutorials, cheatsheets, blogs, feature articles, source code and more. 9%781934"238752 @

"DZone is a developer’s dream,” says PC Magazine. Sponsorship Opportunities

sales@dzone.com
Copyright © 2010 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, rev. 1 001 1 0/08/09
photocopying, or otherwise, without prior written permission of the publisher.


http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://www.refcardz.com

