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Introduction

● RMI allows to invoke the methods of Java objects over the network 
(remote procedure call)

● Method invocations of remote objects look like those of local objects 
(locality transparency)

● Instead of defining a low-level message protocol, Java interfaces are 
used as application protocol

● RMI restricts to Java programs but provides interoperability with 
CORBA
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Remote Objects

● A remote object is a Java object whose methods can be invoked from 
outside the virtual machine in which it lives

● A remote object has a remote interface which defines the methods 
that can remotely be invoked
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RMI Architecture

● The client initiates a remote method invocation by calling the 
corresponding method on the stub

● The stub forwards the method invocation to the remote reference layer 
which sends it over the transport layer to the server

● The skeleton receives from the server-side remote reference layer the 
remote request and converts it into a call of the actual remote object

● If the method generates a return value or an exception, it is returned 
the same way back to the client
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Stubs and Skeletons

A stub
● is a client-side proxy object which implements the same methods as 

the remote object
● maintains an internal reference to the remote object it represents
● forwards a method invocation to the remote reference layer
● is responsible for the marshalling of method arguments and the 

unmarshalling of return values and exceptions

A skeleton
● is the server-side counterpart of a stub
● converts requests from the remote reference layer into appropriate 

calls on the associated remote object
● is responsible for the unmarshalling of method arguments and the 

marshalling of return values and exceptions
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Remote Reference Layer

The remote reference layer
● handles the creation and management of remote object references
● knows the communication style for a given remote object (point-to-

point, replicated, multicast)
● generates the corresponding transport-level requests
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Marshalling and Unmarshalling

Marshalling and unmarshalling is the process of converting arguments, 
return values and exceptions into a serialized form, and vice versa:

● Primitive values are marshalled to their internal byte representation
● Local objects are marshalled using Java object serialization, i.e. the 

receiver obtains a copy of the object (pass by value)
● With remote objects, the stubs are used as marshalled data, i.e. the 

receiver obtains a stub over which it can invoke the object (pass by 
reference)
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RMI Registry

● The RMI registry is a naming service for remote objects
● The server program registers its remote objects with a local registry 

binding the corresponding stubs to names
● A client can look up the remote objects in the server's registry 

providing their names
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RMI Interfaces and Classes

● java.rmi.Remote
is an interface that marks remote interfaces

● java.rmi.RemoteException
is the base exception class used by the RMI runtime to indicate client-
side, server-side or network errors

● java.rmi.RemoteObject
is the base class of remote objects and client stubs, it contains a 
remote reference and re-implements the Object behavior

● java.rmi.server.RemoteServer
is an abstract class with static methods useful for implementing 
remote servers

● java.rmi.server.UnicastRemoteObject
is a concrete subclass of RemoteServer that implements point-to-point 
non-persistent remote references

● java.rmi.registry.Registry
is an interface which defines the access methods of the RMI registry

● java.rmi.registry.LocateRegistry
is a class with static methods to get references of RMI registries
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Example Application

The example application exports a remote calculator to provide clients with 
the calculation capacity of a server machine
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Development Steps

1. Define the remote interface

2. Write a class that implements the remote interface

3. Implement a remote server program

4. Create a client program

5. Compile and run the programs
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Defining a Remote Interface

● A remote interface has to extend the java.rmi.Remote interface
● Each method has to declare that it throws a java.rmi.RemoteException
● Method arguments and return values must be of primitive types, 

serializable objects or remote objects

public interface Calculator extends Remote {
    public double add(double x, double y) throws RemoteException;
    public double subtract(double x, double y) throws RemoteException;
    public double multiply(double x, double y) throws RemoteException;
    public double divide(double x, double y)
        throws ZeroDivisionException, RemoteException;
}
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Implementing a Remote Interface

● The implementation class has to implement all the methods of the 
remote interface

● It may have additional methods which are not remotely callable

public class CalculatorImpl implements Calculator {
    public double add(double x, double y) {
        return x + y;
    }
    ...
    public double divide(double x, double y) throws ZeroDivisionException {
        if (y == 0) throw new ZeroDivisionException();
        return x / y;
    }
}
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Implementing a Remote Server

A remote server
● creates one or more remote objects
● exports the remote objects to the RMI runtime such that they are 

remotely accessible
● registers at least one remote object with a local RMI registry

public class CalculatorServer {
    public static void main(String[] args) throws Exception {
        Calculator calculator = new CalculatorImpl();
        Calculator stub =
            (Calculator) UnicastRemoteObject.exportObject(calculator, 0);
        Registry registry = LocateRegistry.createRegistry(5495);
        registry.bind("Abacus", stub);
    }
    ...
}
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Creating a Client Program

A client program
● gets a reference to the server's RMI registry
● looks up a remote object in the registry
● invokes the methods of the remote object

public class CalculatorClient {
    public static void main(String args[]) throws Exception {
        Registry registry = LocateRegistry.getRegistry(args[0], 5495);
        Calculator calculator = (Calculator) registry.lookup("Abacus");
        double x = calculator.add(1, 1);
        ...
    }
}
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Compiling and Running the Programs

Server:

> javac -d build src/rmi/examples/*.java
> java -cp build rmi.examples.CalculatorServer

Client:

> javac -d build src/rmi/examples/*.java
> java -cp build rmi.examples.CalculatorClient serverhost
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