Remote Method Invocation (RMI)



Introduction

 RMI allows to invoke the methods of Java objects over the network
(remote procedure call)

* Method invocations of remote objects look like those of local objects
(locality transparency)

* Instead of defining a low-level message protocol, Java interfaces are
used as application protocol

* RMI restricts to Java programs but provides interoperability with
CORBA



Remote Objects

Client Server

® Remote
| Object

* Aremote object is a Java object whose methods can be invoked from
outside the virtual machine in which it lives

* Aremote object has a remote interface which defines the methods
that can remotely be invoked



RMI Architecture

Client Objects < RMI > Remote Objects
Stubs Skeletons
JRMP/IIOP
TCP

* The client initiates a remote method invocation by calling the
corresponding method on the stub

* The stub forwards the method invocation to the remote reference layer
which sends it over the transport layer to the server

* The skeleton receives from the server-side remote reference layer the
remote request and converts it into a call of the actual remote object

* If the method generates a return value or an exception, it is returned
the same way back to the client



Stubs and Skeletons

A stub

* s a client-side proxy object which implements the same methods as
the remote object

* maintains an internal reference to the remote object it represents
» forwards a method invocation to the remote reference layer

* s responsible for the marshalling of method arguments and the
unmarshalling of return values and exceptions

A skeleton
* is the server-side counterpart of a stub

* converts requests from the remote reference layer into appropriate
calls on the associated remote object

* is responsible for the unmarshalling of method arguments and the
marshalling of return values and exceptions



Remote Reference Layer

The remote reference layer
* handles the creation and management of remote object references

* knows the communication style for a given remote object (point-to-
point, replicated, multicast)

* generates the corresponding transport-level requests



Marshalling and Unmarshalling

Marshalling and unmarshalling is the process of converting arguments,
return values and exceptions into a serialized form, and vice versa:

* Primitive values are marshalled to their internal byte representation

* Local objects are marshalled using Java object serialization, i.e. the
receiver obtains a copy of the object (pass by value)

* With remote objects, the stubs are used as marshalled data, i.e. the
receiver obtains a stub over which it can invoke the object (pass by
reference)



RMI Registry

RMI Registry

name | stub

lookup() bind()

Client Server

- Remote
Object

* The RMI registry is a naming service for remote objects

* The server program registers its remote objects with a local registry
binding the corresponding stubs to names

* Aclient can look up the remote objects in the server's registry
providing their names



RMI Interfaces and Classes

* java.rmi.Remote
IS an interface that marks remote interfaces

* java.rmi.RemoteException
is the base exception class used by the RMI runtime to indicate client-
side, server-side or network errors

* java.rmi.RemoteObject
is the base class of remote objects and client stubs, it contains a
remote reference and re-implements the Object behavior

* java.rmi.server.RemoteServer
is an abstract class with static methods useful for implementing
remote servers

* java.rmi.server.UnicastRemoteObject
is a concrete subclass of RemoteServer that implements point-to-point
non-persistent remote references

* java.rmi.registry.Registry
is an interface which defines the access methods of the RMI registry

* java.rmi.registry.LocateRegistry
is a class with static methods to get references of RMI registries



Example Application

Remote

Calculator

,,,,,,,,,,,, >

Calculator

Client

The example application exports a remote calculator to provide clients with

Calculator
Impl

Locate
Registry

A

Calculator
Server

the calculation capacity of a server machine

Unicast
RemoteObject

10



Development Steps

Define the remote interface

Write a class that implements the remote interface
Implement a remote server program

Create a client program

Compile and run the programs

o~ LD~

11



Defining a Remote Interface

A remote interface has to extend the java.rmi.Remote interface
Each method has to declare that it throws a java.rmi.RemoteException

Method arguments and return values must be of primitive types,
serializable objects or remote objects

public interface Calculator extends Remote {
public double add(double x, double y) throws RemoteException;
public double subtract(double x, double y) throws RemoteException;

public double multiply(double x, double y) throws RemoteException;
public double divide(double x, double y)

throws ZeroDivisionException, RemoteException;

12



Implementing a Remote Interface

 The implementation class has to implement all the methods of the
remote interface

* It may have additional methods which are not remotely callable

public class Calculatorlmpl implements Calculator {
public double add(double x, double y) {
return x +y;

}

oublic double divide(double x, double y) throws ZeroDivisionException {
if (y == 0) throw new ZeroDivisionException();
return x / y;

}
)

13



Implementing a Remote Server

A remote server
* creates one or more remote objects

* exports the remote objects to the RMI runtime such that they are
remotely accessible

* registers at least one remote object with a local RMI registry

public class CalculatorServer {

public static void main(String[] args) throws Exception {
Calculator calculator = new Calculatorimpl();
Calculator stub =

(Calculator) UnicastRemoteObject.exportObject(calculator, 0);

Reqgistry registry = LocateRegistry.createRegistry(5495);
registry.bind("Abacus”, stub);

}

14



Creating a Client Program

A client program
* gets areference to the server's RMI registry
* looks up a remote object in the registry
* invokes the methods of the remote object

public class CalculatorClient {
public static void main(String args[]) throws Exception {
Reqgistry registry = LocateRegistry.getRegistry(args[0], 5495);
Calculator calculator = (Calculator) registry.lookup("Abacus");
double x = calculator.add(1, 1);

15



Compiling and Running the Programs

Server:

> javac -d build src/rmi/examples/*.java
> java -cp build rmi.examples.CalculatorServer

Client:

> javac -d build src/rmi/examples/*.java
> java -cp build rmi.examples.CalculatorClient serverhost

16



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

