
Remote Method Invocation (RMI)

2

Introduction

● RMI allows to invoke the methods of Java objects over the network
(remote procedure call)

● Method invocations of remote objects look like those of local objects
(locality transparency)

● Instead of defining a low-level message protocol, Java interfaces are
used as application protocol

● RMI restricts to Java programs but provides interoperability with
CORBA

3

Remote Objects

● A remote object is a Java object whose methods can be invoked from
outside the virtual machine in which it lives

● A remote object has a remote interface which defines the methods
that can remotely be invoked

Client

JVM

Server

JVM

Remote
Object

4

RMI Architecture

● The client initiates a remote method invocation by calling the
corresponding method on the stub

● The stub forwards the method invocation to the remote reference layer
which sends it over the transport layer to the server

● The skeleton receives from the server-side remote reference layer the
remote request and converts it into a call of the actual remote object

● If the method generates a return value or an exception, it is returned
the same way back to the client

Client Objects

Stubs

Remote Reference
Layer

Transport Layer

Remote Objects

Skeletons

Remote Reference
Layer

Transport Layer

RMI

JRMP/IIOP

TCP

5

Stubs and Skeletons

A stub
● is a client-side proxy object which implements the same methods as

the remote object
● maintains an internal reference to the remote object it represents
● forwards a method invocation to the remote reference layer
● is responsible for the marshalling of method arguments and the

unmarshalling of return values and exceptions

A skeleton
● is the server-side counterpart of a stub
● converts requests from the remote reference layer into appropriate

calls on the associated remote object
● is responsible for the unmarshalling of method arguments and the

marshalling of return values and exceptions

6

Remote Reference Layer

The remote reference layer
● handles the creation and management of remote object references
● knows the communication style for a given remote object (point-to-

point, replicated, multicast)
● generates the corresponding transport-level requests

7

Marshalling and Unmarshalling

Marshalling and unmarshalling is the process of converting arguments,
return values and exceptions into a serialized form, and vice versa:

● Primitive values are marshalled to their internal byte representation
● Local objects are marshalled using Java object serialization, i.e. the

receiver obtains a copy of the object (pass by value)
● With remote objects, the stubs are used as marshalled data, i.e. the

receiver obtains a stub over which it can invoke the object (pass by
reference)

8

RMI Registry

● The RMI registry is a naming service for remote objects
● The server program registers its remote objects with a local registry

binding the corresponding stubs to names
● A client can look up the remote objects in the server's registry

providing their names

name stub

RMI Registry

Client Server

Remote
Object

bind()lookup()

9

RMI Interfaces and Classes

● java.rmi.Remote
is an interface that marks remote interfaces

● java.rmi.RemoteException
is the base exception class used by the RMI runtime to indicate client-
side, server-side or network errors

● java.rmi.RemoteObject
is the base class of remote objects and client stubs, it contains a
remote reference and re-implements the Object behavior

● java.rmi.server.RemoteServer
is an abstract class with static methods useful for implementing
remote servers

● java.rmi.server.UnicastRemoteObject
is a concrete subclass of RemoteServer that implements point-to-point
non-persistent remote references

● java.rmi.registry.Registry
is an interface which defines the access methods of the RMI registry

● java.rmi.registry.LocateRegistry
is a class with static methods to get references of RMI registries

10

Example Application

The example application exports a remote calculator to provide clients with
the calculation capacity of a server machine

Calculator

Remote

Calculator
Client

Calculator
Impl

Locate
Registry

Calculator
Server

Unicast
RemoteObject

11

Development Steps

1. Define the remote interface

2. Write a class that implements the remote interface

3. Implement a remote server program

4. Create a client program

5. Compile and run the programs

12

Defining a Remote Interface

● A remote interface has to extend the java.rmi.Remote interface
● Each method has to declare that it throws a java.rmi.RemoteException
● Method arguments and return values must be of primitive types,

serializable objects or remote objects

public interface Calculator extends Remote {
 public double add(double x, double y) throws RemoteException;
 public double subtract(double x, double y) throws RemoteException;
 public double multiply(double x, double y) throws RemoteException;
 public double divide(double x, double y)
 throws ZeroDivisionException, RemoteException;
}

13

Implementing a Remote Interface

● The implementation class has to implement all the methods of the
remote interface

● It may have additional methods which are not remotely callable

public class CalculatorImpl implements Calculator {
 public double add(double x, double y) {
 return x + y;
 }
 ...
 public double divide(double x, double y) throws ZeroDivisionException {
 if (y == 0) throw new ZeroDivisionException();
 return x / y;
 }
}

14

Implementing a Remote Server

A remote server
● creates one or more remote objects
● exports the remote objects to the RMI runtime such that they are

remotely accessible
● registers at least one remote object with a local RMI registry

public class CalculatorServer {
 public static void main(String[] args) throws Exception {
 Calculator calculator = new CalculatorImpl();
 Calculator stub =
 (Calculator) UnicastRemoteObject.exportObject(calculator, 0);
 Registry registry = LocateRegistry.createRegistry(5495);
 registry.bind("Abacus", stub);
 }
 ...
}

15

Creating a Client Program

A client program
● gets a reference to the server's RMI registry
● looks up a remote object in the registry
● invokes the methods of the remote object

public class CalculatorClient {
 public static void main(String args[]) throws Exception {
 Registry registry = LocateRegistry.getRegistry(args[0], 5495);
 Calculator calculator = (Calculator) registry.lookup("Abacus");
 double x = calculator.add(1, 1);
 ...
 }
}

16

Compiling and Running the Programs

Server:

> javac -d build src/rmi/examples/*.java
> java -cp build rmi.examples.CalculatorServer

Client:

> javac -d build src/rmi/examples/*.java
> java -cp build rmi.examples.CalculatorClient serverhost

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

